【題目】圓(x+1)2+y2=8內(nèi)有一點(diǎn)P(﹣1,2),AB過(guò)點(diǎn)P,
(1)若弦長(zhǎng) ,求直線AB的傾斜角;
(2)若圓上恰有三點(diǎn)到直線AB的距離等于 ,求直線AB的方程.
【答案】
(1)解:設(shè)圓心(﹣1,0)到直線AB的距離為d,則 d= =1,設(shè)直線AB的傾斜角α,斜率為k,
則直線AB的方程 y﹣2=k(x+1),即 kx﹣y+k+2=0,d=1= ,
∴k= 或﹣ ,
∴直線AB的傾斜角α=60°或 120°.
(2)解:∵圓上恰有三點(diǎn)到直線AB的距離等于 ,
∴圓心(﹣1,0)到直線AB的距離d= = ,
直線AB的方程 y﹣2=k(x+1),
即kx﹣y+k+2=0,
由d= = ,
解可得k=1或﹣1,
直線AB的方程 x﹣y+3=0 或﹣x﹣y+1=0.
【解析】(1)由弦長(zhǎng)公式求出圓心到直線AB的距離,點(diǎn)斜式設(shè)出直線方程,由點(diǎn)到直線的距離公式求出斜率,再由斜率求傾斜角.(2)由題意知,圓心到直線AB的距離d= ,由點(diǎn)到直線的距離公式求出斜率,點(diǎn)斜式寫出直線方程,并化為一般式.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的傾斜角和一般式方程的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α=0°;直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:{x|x≥﹣2},q:{x|x<3},請(qǐng)寫出滿足下列條件的x的集合:
(1)p∧q為真;
(2)p真q假;
(3)p假q真.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱錐P﹣ABC中,D,E分別是AB,BC的中點(diǎn).
(1)求證:DE∥平面PAC;
(2)求證:AB⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種機(jī)器的固定成本為0.5萬(wàn)元,但每生產(chǎn)1百臺(tái)時(shí),又需可變成本(即另增加投入)0.25萬(wàn)元.市場(chǎng)對(duì)此商品的年需求量為5百臺(tái),銷售的收入(單位:萬(wàn)元)函數(shù)為:R(x)=5x﹣ x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺(tái)).
(1)將利潤(rùn)表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時(shí),企業(yè)所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D為AB的中點(diǎn)
(1)求證:AC⊥BC1;
(2)求異面直線AC1與CB1所成角的余弦值;
(3)求二面角D﹣CB1﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓x2+y2+x﹣6y+m=0和直線x+2y﹣3=0交于P、Q兩點(diǎn),
(1)求實(shí)數(shù)m的取值范圍;
(2)求以PQ為直徑且過(guò)坐標(biāo)原點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,設(shè)
命題p:函數(shù)y=logax在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;
q:曲線y=x2+(2a﹣3)x+1與x軸有兩個(gè)不同的交點(diǎn),
如果p∧q為真命題,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=
B.f(x)=ln( ﹣x)
C.f(x)=
D.f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(﹣3,1), =(1,﹣2), = +k (k∈R).
(1)若 與向量2 ﹣ 垂直,求實(shí)數(shù)k的值;
(2)若向量 =(1,﹣1),且 與向量k + 平行,求實(shí)數(shù)k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com