【題目】若函數(shù)為奇函數(shù),且時有極小值.
(1)求實數(shù)的值;
(2)求實數(shù)的取值范圍;
(3)若恒成立,求實數(shù)的取值范圍.
【答案】(1)1;(2);(3)
【解析】
(1)計算,根據(jù)奇函數(shù)得到解得答案.
(2),討論和兩種情況,得到函數(shù)的單調(diào)區(qū)間和極值,計算得到答案.
(3)根據(jù)題意,令,求導(dǎo)得到時單調(diào)遞減,令,則,,得到答案.
(1)由函數(shù)為奇函數(shù)可得,則,,則,
此時,對任意,,
滿足為奇函數(shù),;
(2),
①時,由,可得,則,僅當(dāng)時可能為0,
則在上單調(diào)遞增,無極小值;
②時,,令,可得,則,
,,
即,,則的解為,單調(diào)性如下表:
+ | - | + | |
遞增 | 遞減 | 遞增 |
則在處取得極小值,即,滿足題意;
綜上,的取值范圍是;
(3)根據(jù)第二問可得,
則,
令,,
則時單調(diào)遞減,
由,,,可得,
令,則,在單調(diào)遞增,則的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)求函數(shù)的定義域(用區(qū)間表示);
(2)討論函數(shù)在上的單調(diào)性;
(3)若,求上滿足條件的的集合(用區(qū)間表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求實數(shù),的值;
(2)若,且在區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)若,且,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“文化強(qiáng)國建設(shè)”號召,并增加學(xué)生們對古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計劃建設(shè)一個古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計調(diào)查.統(tǒng)計顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語文教研組計劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會.經(jīng)過綜合考慮與對比,語文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,展現(xiàn)中國文化陰陽轉(zhuǎn)化、對立統(tǒng)一的哲學(xué)理念.定義:圖象能將圓的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”,則下列命題正確的是___________.
(1)函數(shù)可以同時是無數(shù)個圓的“太極函數(shù)”;
(2)函數(shù)可以是某個圓的“太極函數(shù)”;
(3)若函數(shù)是某個圓的“太極函數(shù)”,則函數(shù)的圖象一定是中心對稱圖形;
(4)對于任意一個圓,其“太極函數(shù)”有無數(shù)個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在50個不同地區(qū)的零售價格全部介于13元與18元之間,將各地價格按如下方式分成五組:第一組,第二組,……,第五組.如圖是按上述分組方法得到的頻率分布直方圖.
(1)求價格落在內(nèi)的地區(qū)數(shù);
(2)借助頻率分布直方圖,估計該商品價格的中位數(shù)(精確到0.1);
(3)現(xiàn)從,這兩組的全部樣本數(shù)據(jù)中,隨機(jī)選取兩個地區(qū)的零售價格,記為,,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為且滿足,當(dāng)時,.
(1)判斷在上的單調(diào)性并加以證明;
(2)若方程有實數(shù)根,則稱為函數(shù)的一個不動點,設(shè)正數(shù)為函數(shù)的一個不動點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,長軸在x軸上,長軸長是短軸長的2倍,兩焦點分別為和,橢圓上一點到和的距離之和為12.圓的圓心為.
(1)求的面積;
(2)若橢圓上所有點都在一個圓內(nèi),則稱圓包圍這個橢圓.問:是否存在實數(shù)k使得圓包圍橢圓?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:
統(tǒng)計信息 | 在不堵車的情況下到達(dá)城市乙所需時間(天) | 在堵車的情況下到達(dá)城市乙所需時間(天) | 堵車的概率 | 運(yùn)費(fèi)(萬元) |
公路1 | 2 | 3 | 1.6 | |
公路2 | 1 | 4 | 0.8 |
(1)記汽車選擇公路1運(yùn)送牛奶時牛奶廠獲得的毛收入為(單位:萬元),求的分布列和數(shù)學(xué)期望;
(2)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com