分析 (1)取AC的中點(diǎn)O,連結(jié)OS、OB,由已知推導(dǎo)出AC⊥OS,AC⊥OB,由此能證明AC⊥SB.
(2)平面SAC⊥平面ABC,SO⊥AC,從而SO⊥面ABC,過(guò)O作OD⊥CM于D,連結(jié)SD,則∠SDO是二面角N-CM-B的平面角,由此能求出二面角S-CM-A的平面角的余弦值.
解答 證明:(1)取AC的中點(diǎn)O,連結(jié)OS、OB
∵SA=SC,∴AC⊥OS,
∵BA=BC,∴AC⊥OB,
又OS,OB?平面OSB,OS∩OB=O,
∴AC⊥平面OSB,
∴AC⊥SB.
解:(2)∵平面SAC⊥平面ABC,SO⊥AC,
∴由面面垂直性質(zhì)定理,得SO⊥面ABC,
過(guò)O作OD⊥CM于D,連結(jié)SD,
由三垂線定理,得SD⊥CM,
∴∠SDO是二面角N-CM-B的平面角,
又SO=2$\sqrt{2}$,OD=1,∴SD=$\sqrt{8+1}$=3,
∴cos∠SDO=$\frac{OD}{SD}=\frac{1}{3}$,
∴二面角S-CM-A的平面角的余弦值為$\frac{1}{3}$.
點(diǎn)評(píng) 本題考查異面直線的證明,考查二面角的平面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com