【題目】關(guān)于下列結(jié)論:

①函數(shù)是偶函數(shù);

②直線是函數(shù)的圖象的一條對(duì)稱軸;

③將函數(shù)的圖象向左平移個(gè)單位后,所得圖象的函數(shù)解析式為

④函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.

其中所有正確結(jié)論的序號(hào)為______.

【答案】①②④.

【解析】

①將函數(shù)化簡(jiǎn)為,則此函數(shù)為偶函數(shù);

②求出函數(shù)的圖象的對(duì)稱軸方程為,進(jìn)而可得結(jié)論;

③利用圖象平移即可得到圖象的函數(shù)解析式為

④求出函數(shù)的圖象對(duì)稱中心為.

①函數(shù),故該函數(shù)為偶函數(shù),故①正確;

②函數(shù)的圖象對(duì)稱軸方程為,

,當(dāng)時(shí),此時(shí),即直線是函數(shù)的圖象的一條對(duì)稱軸,故②正確;

③將函數(shù)的圖象向左平移個(gè)單位后,

故所得圖象的函數(shù)解析式為,故③錯(cuò)誤;

④函數(shù)的圖象的對(duì)稱中心為:,

,取時(shí),

所以,函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,故④正確.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是______.

①若直線與直線互相垂直,則

②若,兩點(diǎn)到直線的距離分別是,,則滿足條件的直線共有3

③過,兩點(diǎn)的所有直線方程可表示為

④經(jīng)過點(diǎn)且在軸和軸上截距都相等的直線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的個(gè)數(shù)是(

①底面是矩形的平行六面體是長(zhǎng)方體;

②棱長(zhǎng)都相等的直四棱柱是正方體;

③有兩條側(cè)棱都垂直于底面一邊的平行六面體是直平行六面體;

④相鄰兩個(gè)面垂直于底面的棱柱是直棱柱;

⑤各側(cè)面是全等的等腰三角形的棱錐一定是正棱錐;

⑥三棱錐的頂點(diǎn)在底面上的射影是底面三角形的垂心,則這個(gè)棱錐的三條側(cè)棱長(zhǎng)相等.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向,滿足,且,夾角余弦值的最小值等于_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一片森林原面積為,計(jì)劃從某年開始,每年砍伐一些樹林,且每年砍伐面積與上一年剩余面積的百分比相等.并計(jì)劃砍伐到原面積的一半時(shí),所用時(shí)間是10.為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.

1)求每年砍伐面積與上一年剩余面積的百分比;

2)到今年為止,該森林已砍伐了多少年?

3)為保護(hù)生態(tài)環(huán)境,今后最多還能砍伐多少年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法中錯(cuò)誤的是( )

A. 為真命題,則中至少有一個(gè)為真命題.

B. 命題:“若是冪函數(shù),則的圖象不經(jīng)過第四象限”的否命題是假命題.

C. 命題“,有”的否定形式是“,有”.

D. 若直線和平面,滿足.則“” 是“”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】技術(shù)員小張對(duì)甲、乙兩項(xiàng)工作投入時(shí)間(小時(shí))與做這兩項(xiàng)工作所得報(bào)酬(百元)的關(guān)系式為:,若這兩項(xiàng)工作投入的總時(shí)間為120小時(shí),且每項(xiàng)工作至少投入20小時(shí).

1)試建立小張所得總報(bào)酬(單位:百元)與對(duì)乙項(xiàng)工作投入的時(shí)間(單位:小時(shí))的函數(shù)關(guān)系式,并指明函數(shù)定義域;

2)小張如何計(jì)劃使用時(shí)間,才能使所得報(bào)酬最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD所在的平面與等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,CD=DA=AF=FE=2,AB=4.

(1)求證:DF∥平面BCE;

(2)求二面角C—BF—A的正弦值;

(3)線段CE上是否存在點(diǎn)G,使得AG⊥平面BCF?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),x[-1,1],函數(shù),aR的最小值為ha).

(1)求ha)的解析式;

(2)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)ha)的定義域?yàn)?/span>[nm]時(shí),值域?yàn)?/span>[n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案