已知數(shù)列{an}的各項(xiàng)均為正整數(shù),對(duì)于n=1,2,3,…,有an+1=
3an+5  an為奇數(shù)
an
2k
   an為偶數(shù).其中k為使an+1為奇數(shù)的正整數(shù)
,當(dāng)a1=11時(shí),a100=
 
;若存在m∈N*,當(dāng)n>m且an為奇數(shù)時(shí),an恒為常數(shù)p,則p的值為
 
分析:由題設(shè)分別求出a1,a2,a3,a4,a5,a6,a7,a8,a9,仔細(xì)觀察能夠發(fā)現(xiàn){an}從第3項(xiàng)開始是周期為6的周期數(shù)列,故a100=a3+(6×16+1)=a4;由若存在m∈N*,當(dāng)n>m且an為奇數(shù)時(shí),an恒為常數(shù)p,知an=p,an+1=3p+5,an+2=
3p+5
2k
=p
,再由數(shù)列{an}的各項(xiàng)均為正整數(shù),能求出p.
解答:解:由題設(shè)知,a1=11,
a2=3×11+5=38,
a3=
38
2
=19
,
a4=3×19+5=62,
a5=
62
2
=31
,
a6=3×31+5=98,
a7=
98
2
=49
,
a8=3×49+5=152,
a9=
152
23
=19
,
∴{an}從第3項(xiàng)開始是周期為6的周期數(shù)列,
∴a100=a3+(6×16+1)=a4=62.
若存在m∈N*,當(dāng)n>m且an為奇數(shù)時(shí),an恒為常數(shù)p,
則an=p,an+1=3p+5,an+2=
3p+5
2k
=p
,
∴(3-2k)p=-5,
∵數(shù)列{an}的各項(xiàng)均為正整數(shù),
∴當(dāng)k=2時(shí),p=5,
當(dāng)k=3時(shí),p=1.
故答案為:62,1或5.
點(diǎn)評(píng):本題考查數(shù)列的遞推公式的性質(zhì)和應(yīng)用,解題時(shí)分別求出a1,a2,a3,a4,a5,a6,a7,a8,a9,仔細(xì)觀察能夠發(fā)現(xiàn){an}從第3項(xiàng)開始是周期為6的周期數(shù)列,借助數(shù)列的周期性進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例2.已知數(shù)列{an}的通項(xiàng)公式是an=
2n
3n+1
(n∈N*,n≤8)
,則下列各數(shù)是否為數(shù)列中的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,為什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省贛縣中學(xué)2011屆高三適應(yīng)性考試數(shù)學(xué)理科試題 題型:013

已知數(shù)列{an}的通項(xiàng)為an=3n+8,下列各選項(xiàng)中的數(shù)為數(shù)列{an}中的項(xiàng)的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

例2.已知數(shù)列{an}的通項(xiàng)公式是數(shù)學(xué)公式,則下列各數(shù)是否為數(shù)列中的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,為什么?(1)數(shù)學(xué)公式(2)數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第6章 數(shù)列):6.1 數(shù)列定義與通項(xiàng)(解析版) 題型:解答題

例2.已知數(shù)列{an}的通項(xiàng)公式是,則下列各數(shù)是否為數(shù)列中的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,為什么?(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知數(shù)列{an}的通項(xiàng)為an=3n+8,下列各選項(xiàng)中的數(shù)為數(shù)列{an}中的項(xiàng)的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步練習(xí)冊(cè)答案