17.對(duì)△ABC有下面結(jié)論:①滿足sinA=sinB的△ABC一定是等腰三角形②滿足sinA=cosB的三角形一定是直角三角形 ③滿足$\frac{a}{sinA}$=$\frac{sinB}$=c的△ABC一定是直角三角形,則正確命題的序號(hào)是①③.

分析 ①,由sinA=sinB,利用正弦定理可得 a=b,;
②,舉例說(shuō)明sinA=cosB時(shí),△ABC不一定是直角三角形;
③,若$\frac{a}{sinA}$=$\frac{sinB}$=c,則△ABC的外接圓的直徑等于c,△ABC是直角三角形,.

解答 接:對(duì)于①,由sinA=sinB,利用正弦定理可得 a=b,故 ①正確;
對(duì)于②,不妨令A(yù)=100°,B=10°,此時(shí)sinA=cosB,△ABC不是直角三角形,∴故②錯(cuò)誤;
對(duì)于③,若$\frac{a}{sinA}$=$\frac{sinB}$=c,則△ABC的外接圓的直徑等于c,△ABC是直角三角形,故③正確.
故答案為:①③.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,也考查了解三角形的應(yīng)用問(wèn)題,考查了分析問(wèn)題與解決問(wèn)題的能力,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),若P(X>-2)=0.9,則P(1<X<4)=(  )
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+2lnx}{x^2}$,且方程f(x)-m=0有兩個(gè)相異實(shí)數(shù)根x1,x2(x1>x2).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求實(shí)數(shù)m的取值范圍;
(3)證明:x12x2+x1x22>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)sin(\frac{π}{4}+α)=-\frac{3}{10}$,則tanα=( 。
A.$\frac{1}{2}$B.2C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知A、B分別為橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn),兩個(gè)不同的動(dòng)點(diǎn)P、Q在橢圓C上且關(guān)于x軸對(duì)稱,設(shè)直線AP、BQ的斜率分別為m、n,則當(dāng)$\frac{1}{2mn}$+ln|m|+ln|n|取最小值時(shí),橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知等邊△ABC的邊長(zhǎng)為2,圓A的半徑為1,PQ為圓A的任意一條直徑.
(1)判斷$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否會(huì)隨點(diǎn)P的變化而變化,請(qǐng)說(shuō)明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2lnx+x2+(a-1)x-a,(a∈R),當(dāng)x≥1時(shí),f(x)≥0恒成立.
(1)求實(shí)數(shù)a的取值范圍;
(2)若正實(shí)數(shù)x1、x2(x1≠x2)滿足f(x1)+f(x2)=0,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.?dāng)?shù)列{an}為非常數(shù)列,滿足:a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$的值為(  )
A.1475B.1425C.1325D.1275

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0,$\frac{π}{2}$),則函數(shù)g(x)=cos(2x-φ)的圖象可由f(x)圖象向_____平移_____個(gè)單位得到.( 。
A.左  $\frac{π}{3}$B.左  $\frac{π}{6}$C.右  $\frac{π}{3}$D.右  $\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案