1.圓x2+y2-6x+4y=3的圓心坐標(biāo)與半徑是(  )
A.$(-3,2)\;\;\;\;\;\;\;\sqrt{13}$B.$(3,-2)\;\;\;\;\;\;\;\sqrt{13}$C.(-3,2)4D.(3,-2)4

分析 由題意將圓的方程化為標(biāo)準(zhǔn)方程,再求出圓心坐標(biāo)和半徑即可.

解答 解:將方程x2+y2-6x+4y=3化為標(biāo)準(zhǔn)方程:(x-3)2+(y+2)2=16,
則圓心坐標(biāo)為(3,-2),半徑為4.
故選:D.

點(diǎn)評(píng) 本題考查了將圓的一般方程用配方法化為標(biāo)準(zhǔn)方程,進(jìn)而求出圓心坐標(biāo)和半徑,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知{an}是等比數(shù)列,a2+a5=18,a3+a6=9,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a,b∈R,則“$\frac{{a}^{2}}{a-b}$<0”是“a<b”的(  )條件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=2x3-x+4在點(diǎn)(-$\frac{1}{2}$,$\frac{17}{4}$)處的切線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知角θ的終邊經(jīng)過(guò)點(diǎn)$P(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,則tanθ的值為(  )
A.$-\sqrt{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對(duì)稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列判斷錯(cuò)誤的個(gè)數(shù)有( 。
(1)由一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到回歸直線方程$\hat y=\hat bx+\hat a$,此直線必經(jīng)過(guò)樣本點(diǎn)中心
(2)用數(shù)學(xué)歸納法證明等式1+2+3+…+2n=$\frac{{2}^{n}({2}^{n}+1)}{2}$(n≥2,n∈N*)的過(guò)程中,第一步歸納基礎(chǔ),等式左邊的式子是1+2
(3)關(guān)于實(shí)數(shù)x的不等式關(guān)系x+$\frac{1}{x}$≥2恒成立
(4)“am2<bm2”是“a<b”的必要不充分條件.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷售收益(單位:萬(wàn)元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.
廣告投入x/萬(wàn)元12345
銷售收益y/萬(wàn)元23257
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到上表:表中的數(shù)據(jù)顯示x與y之間存在線性相關(guān)關(guān)系,求y關(guān)于x的回歸方程;
(Ⅲ)若廣告投入6萬(wàn)元時(shí),實(shí)際銷售收益為7.3萬(wàn)元,求殘差$\hat e$.
附:${\;}_^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.行駛中的汽車,在剎車時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號(hào)汽車的剎車距離y(m)與汽車的車速x(km/h)滿足下列關(guān)系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n為常數(shù),且n∈N).
我們做過(guò)兩次剎車試驗(yàn),第一次剎車時(shí)車速為40km/h,有關(guān)數(shù)據(jù)如圖所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使剎車距離不超過(guò)18.4m,則行駛的最大速度應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案