9.已知$\overrightarrow{a}$=(-1,3)與$\overrightarrow$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo),并求|5$\overrightarrow{a}$-2$\overrightarrow$|.

分析 利用向量坐標(biāo)運算性質(zhì)、數(shù)量積運算性質(zhì)即可得出.

解答 解:5$\overrightarrow{a}$-2$\overrightarrow$=(-5,15)-(0,12)=(-5,3),
|5$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{(-5)^{2}+{3}^{2}}$=$\sqrt{34}$.

點評 本題考查了向量坐標(biāo)運算性質(zhì)、數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a、b都是不等于1的正數(shù),則“a>b>1”是“l(fā)oga3<logb3”的( 。l件.
A.充要B.充分非必要
C.必要非充分D.既非充分也非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx-kx+1(k∈R).
(Ⅰ)討論函數(shù)f(x)的零點個數(shù);
(Ⅱ)當(dāng)k=1時,求證:2f(x)≤2-x-e1-x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為2+2$\sqrt{5}$,體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)證明:an>1;
(Ⅱ)證明:$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<$\frac{9}{5}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)復(fù)數(shù)z滿足關(guān)系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若所有形如3a+$\sqrt{2}$b(a∈Z,b∈Z)的數(shù)組成集合A,判斷6-2$\sqrt{2}$是不是集合A中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)二次函數(shù)f(x)=(k-4)x2+kx(k∈R),對任意實數(shù)x,有f(x)≤6x+2恒成立;正項數(shù)列{an}滿足an+1=f(an).?dāng)?shù)列{bn},{cn}分別滿足|bn+1-bn|=2,cn+12=4cn2
(1)若數(shù)列{bn},{cn}為遞增數(shù)列,且b1=1,c1=-1,求{bn},{cn}的通項公式;
(2)在(1)的條件下,若g(n)=$\frac{_{n}}{f(n)-\frac{1}{2}}$(n≥1,n∈N*),求g(n)的最小值;
(3)已知a1=$\frac{1}{3}$,是否存在非零整數(shù)λ,使得對任意n∈N*,都有l(wèi)og3($\frac{1}{\frac{1}{2}-{a}_{1}}$)+log3($\frac{1}{\frac{1}{2}-{a}_{2}}$)+…+log3($\frac{1}{\frac{1}{2}-{a}_{n}}$)>-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,點E滿足$\overrightarrow{BE}=3\overrightarrow{EC}$,且$\overrightarrow{AE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,則m-n=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案