分析 (1)f′(x)=x2-4x+a,由題意知,方程x2-4x+a=-1有兩個相等的根,即可求a的值;求出切點坐標(biāo),可得切線l的方程;
(2)由(1)知k=x2-4x+3=(x-2)2-1≥-1,即可求α的取值范圍.
解答 解:(1)f′(x)=x2-4x+a,由題意知,方程x2-4x+a=-1有兩個相等的根,
∴△=(-4)2-4(a+1)=0,∴a=3
此時方程x2-4x+a=-1化為x2-4x+4=0,得x=2,
解得切點的縱坐標(biāo)為$f(2)=\frac{2}{3}$,
∴切線l的方程為$y-\frac{2}{3}=-({x-2})$,即3x+3y-8=0.
(2)設(shè)曲線y=f(x)上任一點(x,y)處的切線的斜率為k(由題意知k存在),
則由(1)知k=x2-4x+3=(x-2)2-1≥-1,
∴由正切函數(shù)的單調(diào)性可得α的取值范圍為$0≤α<\frac{π}{2}$或$\frac{3π}{4}≤α<π$.
點評 本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π+$\sqrt{3}π$ | B. | 16π+8$\sqrt{3}$π | C. | 16π+$\frac{8}{3}\sqrt{3}π$ | D. | 16π+$\frac{4}{3}\sqrt{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com