17.已知f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$ 則方程f[f(x)]=3的根的個(gè)數(shù)是( 。
A.6B.5C.4D.3

分析 由題意得2f(x)+1=3或|lnf(x)|=3,從而解得f(x)=e3或f(x)=e-3;從而再討論即可.

解答 解:由題意得,
2f(x)+1=3或|lnf(x)|=3,
即f(x)=1(舍去)或f(x)=e3或f(x)=e-3;
若f(x)=e3,
則2x+1=e3或|lnx|=e3
故x=$\frac{{e}^{3}-1}{2}$(舍去)或x=${e}^{{e}^{3}}$或x=${e}^{-{e}^{3}}$;
若f(x)=e-3,
則2x+1=e-3或|lnx|=e-3,
故x=$\frac{{e}^{-3}-1}{2}$或x=${e}^{{e}^{-3}}$或x=${e}^{-{e}^{-3}}$;
故方程f[f(x)]=3共有5個(gè)解,
故選:B.

點(diǎn)評(píng) 本題考查了分段函數(shù)與復(fù)合函數(shù)的應(yīng)用,同時(shí)考查了分類討論的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sin(α+β)=$\frac{1}{2},sin(α-β)=\frac{1}{10}$,則tanαcotβ=( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=$\sqrt{-{x^2}+4x-3}$的定義域是( 。
A.(-∞,1]B.[3,+∞)C.[1,3]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)g(x)=ax3+2x2+3ax在區(qū)間(-∞,$\frac{a}{3}$)內(nèi)單凋遞減,則a的取值范圍是( 。
A.(-∞,0]B.[$-\frac{2}{3}$,$\frac{2}{3}$]C.(-∞,-$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若冪函數(shù)y=xn在區(qū)間(0,1)上的圖象在直線y=x的上方,則n的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}滿足:a1=2,8an+1=2an+$\sqrt{1+4{a}_{n}}$-1(n∈N),bn=$\sqrt{1+4{a}_{n}}$(n∈N),數(shù)列cn=$\frac{n(_{n}-1)}{4}$,n∈N*,記數(shù)列{cn}的前n項(xiàng)和為Sn,求證:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用定積分的幾何意義求${∫}_{a}^$$\sqrt{-(x-a)(x-b)}$dx的值(b>a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=4sin3xcosx-2sinxcosx-$\frac{1}{2}$cos4x.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,則目標(biāo)函數(shù)$z=\frac{y+1}{x+1}$的取值范圍是( 。
A.$[{\frac{1}{2},\frac{5}{2}}]$B.$({-∞,\frac{1}{2}}]$C.$[{\frac{1}{2},2}]$D.$[{\frac{5}{2},+∞})$

查看答案和解析>>

同步練習(xí)冊(cè)答案