精英家教網 > 高中數學 > 題目詳情

【題目】將7名應屆師范大學畢業(yè)生分配到3所中學任教.

(1)4個人分到甲學校,2個人分到乙學校,1個人分到丙學校,有多少種不同的分配方案?

(2)一所學校去4個人,另一所學校去2個人,剩下的一個學校去1個人,有多少種不同的分配方案?

【答案】(1);(2).

【解析】試題分析:

(1)由題意利用分步乘法計數原理,分三步可得總的分配方案有(種);

(2)由題意利用分步乘法計數原理,分四步可得總的分配方案有(種).

試題解析:

(1)利用分步乘法計數原理,第一步,4個人分到甲學校,有種分法;第二步,2個人分到乙學校,有種分法;第三步,剩下的1個人分到丙學校,有種分法,所以,總的分配方案有(種)

(2)同樣用分步乘法計數原理,第一步,選出4人有種方法;第二步,選出2人有種方法;第三步,選出1人有種方法;第四步,將以上分出的三伙人進行全排列有種方法.所以分配方案有(種)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)求函數的單調區(qū)間和極值;

(2)是否存在實數,使得函數上的最小值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電子商務公司對10 000名網絡購物者2017年度的消費情況進行統計,發(fā)現消費金額(單位:萬元)都在區(qū)間[0.3,0.9],其頻率分布直方圖如圖所示.

(1)直方圖中的a=_____;

(2)在這些購物者中,消費金額在區(qū)間[0.5,0.9]內的購物者的人數為_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形為梯形, , 平面, , , 中點.

(1)求證:平面平面

(2)線段上是否存在一點,使平面?若有,請找出具體位置,并進行證明:若無,請分析說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的偶函數,當時, .

1)直接寫出函數的增區(qū)間(不需要證明);

(2)求出函數, 的解析式;

3)若函數, 求函數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(Ⅰ)若函數為定義域上的單調函數,求實數的取值范圍;

(Ⅱ)當時,函數的兩個極值點為, ,且.證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的單調遞減區(qū)間;

(2)當時,設函數.若存在區(qū)間,使得函數上的值域為,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數,若在定義域內存在實數,滿足,則稱為“局部奇函數”.

(1)已知二次函數,試判斷是否為“局部奇函數”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數”,求實數的取值范圍;

(3)若為定義域上的“局部奇函數”,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】媒體為調查喜歡娛樂節(jié)目是否與性格外向有關,隨機抽取了400名性格外向的和400名性格內向的居民,抽查結果用等高條形圖表示如下圖:

(1)填寫完整如下列聯表;

(2)根據列聯表的獨立性檢驗,能否在犯錯誤的概率不超過0.001的前提下認為喜歡娛樂節(jié)目與性格外向有關?

參考數據及公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案