已知函數(shù)

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)單調(diào)增區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

 

【答案】

(1)  (2) 單調(diào)增區(qū)間為 (3)

【解析】

試題分析:⑴因為函數(shù),

所以,,

又因為,所以函數(shù)在點處的切線方程為

⑵由⑴,

因為當(dāng)時,總有上是增函數(shù),

,所以不等式的解集為

故函數(shù)的單調(diào)增區(qū)間為

⑶因為存在,使得成立,

而當(dāng)時,,

所以只要即可.

又因為,的變化情況如下表所示:

減函數(shù)

極小值

增函數(shù)

 

所以上是減函數(shù),在上是增函數(shù),所以當(dāng)時,的最小值的最大值中的最大值.

因為,

令,因為,

所以上是增函數(shù).

,故當(dāng)時,,即;

當(dāng)時,,即

所以,當(dāng)時,,即,函數(shù)上是增函數(shù),解得;當(dāng)時,,即,函數(shù)上是減函數(shù),解得

綜上可知,所求的取值范圍為

考點:函數(shù)單調(diào)性最值

點評:第一問主要利用導(dǎo)數(shù)的幾何意義:函數(shù)在某一點處的導(dǎo)數(shù)值等于該點處的切線斜率;第二問求單調(diào)增區(qū)間主要是通過導(dǎo)數(shù)大于零;第三問的不等式恒成立轉(zhuǎn)化為求函數(shù)最值,這是函數(shù)題經(jīng)常用到的轉(zhuǎn)化方法,本題第三問有一定的難度

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟(jì)南外國語高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟(jì)南外國語高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(xué)(解析版) 題型:解答題

(本小題滿分14分)

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步練習(xí)冊答案