分析:(1)由對(duì)于任意n∈N
*,S
n+2
n是a
n+1與a
1的等差中項(xiàng),可得
an+1+a1=2(Sn+2n),分別令n=1,2即可得出a
2,a
3;
(2)由
an+1+a1=2(Sn+2n),可得
an+a1=2(Sn-1+2n-1),(n≥2).
兩式相減得
an+1=3an+2n,可化為
an+1+2n+1=3(an+2n),
又
a2+22=3×(1+21),可得數(shù)列{a
n+2
n}是以
a1+21=3為首項(xiàng),3公比的等比數(shù)列.
(3)由(2)可知:
an+2n=3×3n-1,得
an=3n-2n.
可得
=
=1-
()n,再利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:解:(1)∵對(duì)于任意n∈N
*,S
n+2
n是a
n+1與a
1的等差中項(xiàng),
∴
an+1+a1=2(Sn+2n),
當(dāng)n=1時(shí),可得
a2+a1=2(a1+21),又a
1=1,解得a
2=5,
當(dāng)n=2時(shí),可得
a3+a1=2(a1+a2+22),解得a
3=19.
(2)由
an+1+a1=2(Sn+2n),可得
an+a1=2(Sn-1+2n-1),(n≥2).
兩式相減得
an+1=3an+2n,
∴
an+1+2n+1=3(an+2n),
又
a2+22=3×(1+21),
∴數(shù)列{a
n+2
n}是以
a1+21=3為首項(xiàng),3公比的等比數(shù)列.
(3)由(2)可知:
an+2n=3×3n-1,得
an=3n-2n.
∴
=
=1-
()n,
∴
{}的前n項(xiàng)和=
(1+1+…+1)-(+()2+…+()n)=n-2(1-()n)=n-2+2•()n.
點(diǎn)評(píng):熟練掌握等差數(shù)列、等比數(shù)列及其前n項(xiàng)和公式、以及可化為等比數(shù)列的數(shù)列的解法等是解題的關(guān)鍵.