7.設(shè)a≥0,若P=$\sqrt{a}$+$\sqrt{a+8}$,Q=$\sqrt{a+2}$+$\sqrt{a+6}$,則P<Q(請用“>”,“<““=“符號填)

分析 平方作差即可得出.

解答 解:∵Q2-P2=2a+8-2$\sqrt{{a}^{2}+8a+12}$-$(2a+8+2\sqrt{{a}^{2}+8a})$=2($\sqrt{{a}^{2}+8a+12}$-$\sqrt{{a}^{2}+8a})$>0,
∴Q2>P2,
∵a≥0,∴P,Q>0.
∴Q>P.
故答案為:<.

點評 本題考查了“平方法”、“作差法”比較數(shù)的大小,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3-3x2+2,函數(shù)g(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+1,x<0}\\{(x-\frac{1}{2})^{2}+1,x≥0}\end{array}\right.$,則關(guān)于x的方程g[f(x)]-a=0(a>0)的實根個數(shù)取得最大值時,實數(shù)a的取值范圍是( 。
A.(1,$\frac{5}{4}$]B.(1,$\frac{5}{4}$)C.[1,$\frac{5}{4}$]D.[0,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式x(x-2)>0的解集是(  )
A.(-∞,-2)∪(0,+∞)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項和為Sn,a4=4,S5=15.
(1)求{an}的通項公式;
(2)設(shè)bn=${2}^{{a}_{n}}$+2an,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程ln(2x+1)+ex-1=0的根的集合為{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知Sn為數(shù)列{an}的前n項和,a1=1,2Sn=(n+1)an,若存在唯一的正整數(shù)n使得不等式an2-tan-2≤0成立,則實數(shù)t的取值范圍為[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.現(xiàn)給出(x,y)的5組數(shù)據(jù):(2,1),(3,2),(4,4),(5,4),(6,5),根據(jù)這5組數(shù)據(jù)計算得到y(tǒng)關(guān)于x的線性回歸方程$\widehat{y}$=x+$\widehat{a}$,由此方程可以預(yù)測得到的數(shù)據(jù)可以為( 。
A.(7,6)B.(8,7.5)C.(9,8.6)D.(10,9.2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線y2=8x的準(zhǔn)線過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點,且雙曲線的兩條漸近線方程為y=±2x,則雙曲線離心率為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某賽季甲、乙兩名籃球運動員每場比賽得分的原始記錄如下:
甲運動員得分:13,51,23,8,26,38,16,33,14,28,39;
乙運動員得分:49,24,12,31,50,31,44,36,15,37,25,36,39.
(Ⅰ)用十位數(shù)作莖,畫出原始數(shù)據(jù)的莖葉圖;
(Ⅱ)用分層抽樣的方法在乙運動員得分十位數(shù)為2、3、4的比賽中抽取一個容量為5的樣本,從該樣本中隨機抽取2場,求其中恰有1場的得分大于40分的概率.

查看答案和解析>>

同步練習(xí)冊答案