19.現(xiàn)給出(x,y)的5組數(shù)據(jù):(2,1),(3,2),(4,4),(5,4),(6,5),根據(jù)這5組數(shù)據(jù)計(jì)算得到y(tǒng)關(guān)于x的線性回歸方程$\widehat{y}$=x+$\widehat{a}$,由此方程可以預(yù)測得到的數(shù)據(jù)可以為(  )
A.(7,6)B.(8,7.5)C.(9,8.6)D.(10,9.2)

分析 求得樣本中心點(diǎn)($\overline{x}$,$\overline{y}$),代入求得$\widehat{a}$,分別將A,B,C和D代入回歸直線方程,驗(yàn)證是否成立,即可得到答案.

解答 解:$\overline{x}$=$\frac{2+3+4+5+6}{5}$=4,$\overline{y}$=$\frac{1+2+4+4+5}{5}$=3.2,
由線性回歸$\widehat{y}$=x+$\widehat{a}$過樣本中心點(diǎn)($\overline{x}$,$\overline{y}$),
$\widehat{a}$=$\overline{y}$-$\overline{x}$=3.2-4=0.8,
線性回歸方程$\widehat{y}$=x-0.8,
將A,B,C和D分別代入,即可驗(yàn)證D正確,
故選:D.

點(diǎn)評 本題考查線性回歸方程的求法和應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=tanx,g(x)=$\left\{\begin{array}{l}{|x|,-\frac{π}{2}≤x≤\frac{π}{2}}\\{g(x-π),\frac{π}{2}<x≤3π}\end{array}\right.$,則f(x)-g(x)的零點(diǎn)個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)=3sin(x+$\frac{π}{6}$),則y=f(x)圖象的對稱軸是x=kπ+$\frac{π}{3}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)a≥0,若P=$\sqrt{a}$+$\sqrt{a+8}$,Q=$\sqrt{a+2}$+$\sqrt{a+6}$,則P<Q(請用“>”,“<““=“符號填)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足(1+i)z=2+i,則$\overline{z}$=( 。
A.$\frac{3}{2}$-$\frac{1}{2}$iB.$\frac{3}{2}$+$\frac{1}{2}$iC.1+$\frac{1}{2}$iD.1-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計(jì)算:$\root{3}{125}$=5,8${\;}^{lo{g}_{2}3}$=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,洪澤湖濕地為拓展旅游業(yè)務(wù),現(xiàn)準(zhǔn)備在濕地內(nèi)建造一個(gè)觀景臺P,已知射線AB,AC為濕地兩邊夾角為120°的公路(長度均超過2千米),在兩條公路AB,AC上分別設(shè)立游客接送點(diǎn)M,N,從觀景臺P到M,N建造兩條觀光線路PM,PN,測得AM=2千米,AN=2千米.
(1)求線段MN的長度;
(2)若∠MPN=60°,求兩條觀光線路PM與PN之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在一個(gè)口袋中裝有3個(gè)白球,4個(gè)黑球,3個(gè)紅球,一次從中摸出3個(gè)球.
(1)求摸出的3個(gè)球顏色不全相同的概率;
(2)規(guī)定摸出1個(gè)白球、1個(gè)黑球、1個(gè)紅球分別得1分、2分、3分,設(shè)X為摸出3個(gè)球的得分之和,求隨機(jī)變量X≥6的概率分布及數(shù)學(xué)期望E(X≥6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下面有兩個(gè)游戲規(guī)則,袋子中分別裝有球,從袋中無放回地取球,分別計(jì)算甲獲勝的概率,并說明哪個(gè)游戲是公平的?
游戲1游戲2
2個(gè)紅球和2個(gè)白球3個(gè)紅球和1個(gè)白球
取1個(gè)球,再取1個(gè)球取1個(gè)球,再取1個(gè)球
取出的兩個(gè)球同色→甲勝取出的兩個(gè)球同色→甲勝
取出的兩個(gè)球不同色→乙勝取出的兩個(gè)球不同色→乙勝

查看答案和解析>>

同步練習(xí)冊答案