【題目】已知函數(shù),.
(1)若曲線在處的切線方程為,求實數(shù)的值;
(2)設(shè),若對任意兩個不等的正數(shù),,都有恒成立,求實數(shù)的取值范圍;
(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】
試題分析:(1)借助題設(shè)條件運用導(dǎo)數(shù)的幾何意義建立方程求解;(2)借助題設(shè)運用轉(zhuǎn)化化歸的思想進(jìn)行轉(zhuǎn)化再運用導(dǎo)數(shù)知識求解;(3)依據(jù)題設(shè)先將問題進(jìn)行轉(zhuǎn)化,再借助導(dǎo)數(shù)知識分類整合思想分類探求求解.
試題解析:
(1)由,得,
由題意,所以.
(2),
因為對任意兩個不等的正數(shù),,都有,
設(shè),則,即恒成立,
問題等價于函數(shù),即在為增函數(shù),
所以在上恒成立,即在上恒成立,
所以,即實數(shù)的取值范圍是.
(3)不等式等價于,
整理得,
設(shè),由題意知,在上存在一點,使得,
由,
因為,所以,令,得.
①當(dāng),即時,在上單調(diào)遞增,
只需,解得.
②當(dāng),即時,在處取最小值,
令,即,可得,
考查式子,因為,可得左端大于1,而右端小于1,所以不等式不可能成立.
③當(dāng),即時,在上單調(diào)遞減,
只需,解得.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項預(yù)賽,成績?nèi)缦拢?/span>
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.
(1)求的單調(diào)區(qū)間;
(2)設(shè),對任意,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每輪游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓是否出現(xiàn)音樂相互獨立.
(1)玩三輪游戲,至少有一輪出現(xiàn)音樂的概率是多少?
(2)設(shè)每輪游戲獲得的分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月26日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實施意見》,衛(wèi)生部對16所大學(xué)食堂的“進(jìn)貨渠道合格性”和“食品安全”進(jìn)行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學(xué)食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:
(1)現(xiàn)從16所大學(xué)食堂中隨機(jī)抽取3個,求至多有1個評分不低于9分的概率;
(2)以這16所大學(xué)食堂評分?jǐn)?shù)據(jù)估計大學(xué)食堂的經(jīng)營性質(zhì),若從全國的大學(xué)食堂任選3個,記表示抽到評分不低于9分的食堂個數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計后,按人均用電量分為, , , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是
A. 月份人均用電量人數(shù)最多的一組有人
B. 月份人均用電量不低于度的有人
C. 月份人均用電量為度
D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有些事,有些人會永遠(yuǎn)留在腦海,不會忘記,不會褪色.其實沒什么放不下的,只是會覺得,付出了這么多時間,卻始終沒有被感動......已知拋物線,且,,三點中恰有兩點在拋物線上,另一點是拋物線的焦點.
(1)求證:、、三點共線;
(2)若直線過拋物線的焦點且與拋物線交于、兩點,點到軸的距離為,點到軸的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個容量為7的樣本進(jìn)行分析.
(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)
(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
數(shù)學(xué)成績 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成績 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;
②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜郑?/span>
附:線性回歸方程,
其中,.
76 | 83 | 812 | 526 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一批材料可以建成200m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形,如何設(shè)計這塊矩形場地的長和寬,能使面積最大,并求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com