3.已知a∈R,x∈R,$A=\left\{{2,4,x_{\;}^2-5x+9}\right\}$,$B=\left\{{3,x_{\;}^2+ax+a}\right\}$,$C=\left\{{1,x_{\;}^2+(a+1)x-3}\right\}$.
求(1)使2∈B,B⊆A的a,x的值;
(2)使B=C的a,x的值.

分析 (1)由x2+ax+a=2與x2-5x+9=3聯(lián)立即可求得a,x的值;
(2)由B=C,可得x2+(a+1)x-3=3與x2+ax+a=1,求解即可得a,x的值.

解答 解:(1)∵2∈B,B?A,
∴$\left\{\begin{array}{l}2=x_{\;}^2+ax+a\\ 3=x_{\;}^2-5x+9\end{array}\right.$,解得$\left\{\begin{array}{l}x=2\\ a=-\frac{2}{3}\end{array}\right.$或$\left\{\begin{array}{l}x=3\\ a=-\frac{7}{4}\end{array}\right.$.
∴x=2,$a=-\frac{2}{3}$或x=3,$a=-\frac{7}{4}$;
(2)∵B=C,∴$\left\{\begin{array}{l}x_{\;}^2+(a+1)x-3=3\\ x_{\;}^2+ax+a=1\end{array}\right.$,解得$\left\{\begin{array}{l}x=-1\\ a=-6\end{array}\right.$或$\left\{\begin{array}{l}x=3\\ a=-2\end{array}\right.$.
∴x=-1,a=-6或x=3,a=-2.

點評 本題考查了利用集合相等的條件確定元素的關(guān)系,考查方程思想運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三棱錐S-ABC中,側(cè)棱SA⊥底面ABC,AB=5,BC=8,∠B=60°,$SA=2\sqrt{5}$,則該三棱錐的外接球的表面積為( 。
A.$\frac{64}{3}π$B.$\frac{256}{3}π$C.$\frac{436}{3}π$D.$\frac{2048}{27}\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm)根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2),假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),則P(X≥1)=( 。
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592.
A.0.0026B.0.0408C.0.0416D.0.9976

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線y2=x的焦點是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1的一個焦點,則橢圓的離心率為( 。
A.$\frac{\sqrt{37}}{37}$B.$\frac{\sqrt{13}}{13}$C.$\frac{1}{4}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60),…,[90,100]后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 從成績在[40,50)和[90,100]的學(xué)生中任選兩人,求他們在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖的程序框圖,輸出的結(jié)果為( 。
A.57B.42C.26D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|2x2-9x+4>0},集合B={y|y=-x2+2x,x∈∁RA},集合C={x|m+1<x≤2m-1}.
(1)求集合B;
(2)若A∪C=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在[-2,2]上的奇函數(shù),當(dāng)x∈(0,2]時,f(x)=x2-3x+4,函數(shù)y=f(x)的值域是( 。
A.(-4,4)B.$(-2,-\frac{7}{4}]∪\left.{\left\{0\right.}\right\}∪[\frac{7}{4},2)$C.$(-4,-\frac{7}{4}]∪\left.{\left\{0\right.}\right\}∪[\frac{7}{4},4)$D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.解下列方程:
(1)log22x-log2x2-3=0
(2)log2(9x-5)=2+log2(3x-2).

查看答案和解析>>

同步練習(xí)冊答案