已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.
(I)若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;
(II)在x軸上是否存在定點C,使
CA
CB
為常數(shù)?若存在,求出點C的坐標;若不存在,請說明理由.
由條件知F1(-2,0),F(xiàn)2(2,0),設A(x1,y1),B(x2,y2
(I)設M(x,y),則
F1M
=(x+2,y)
,
F1A
=(x1+2,y1)
,
F1B
=(x2+2,y2),
F1O
=(2,0)
,
F1M
=
F1A
+
F1B
+
F1O
,得
x+2=x1+x2+6
y=y1+y2
,即
x1+x2=x-4
y1+y2=y
,
于是AB的中點坐標為(
x-4
2
,
y
2
)

當AB不與x軸垂直時,
y1-y2
x1-x2
=
y
2
x-4
2
-2
=
y
x-8
,即y1-y2=
y
x-8
(x1-x2)
,
又因為A,B兩點在雙曲線上,所以x12-y12=2,x22-y22=2,
兩式相減得(x1-x2)(x1+x2)=(y1-y2)(y1+y2),即(x1-x2)(x-4)=(y1-y2)y,
y1-y2=
y
x-8
(x1-x2)
代入上式,化簡得(x-6)2-y2=4,
當AB與x軸垂直時,x1=x2=2,求得M(8,0),也滿足上述方程,
所以點M的軌跡方程是(x-6)2-y2=4.

(II)假設在x軸上存在定點C(m,0),使
CA
CB
為常數(shù),
當AB不與x軸垂直時,設直線AB的方程是y=k(x-2)(k≠±1),
代入x2-y2=2有(1-k2)x2+4k2x-(4k2+2)=0
則x1,x2是上述方程的兩個實根,所以x1+x2=
4k2
k2-1
,x1x2=
4k2+2
k2-1

于是
CA
CB
=(x1-m)(x2-m)+k2(x1-2)(x2-2)

=(k2+1)x1x2-(2k2+m)(x1+x2)+4k2+m2
=
(k2+1)(4k2+2)
k2-1
-
4k2(2k2+m)
k2-1
+4k2+m2

=
2(1-2m)k2+2
k2-1
+m2

=2(1-2m)+
4-4m
k2-1
+m2

因為
CA
CB
是與k無關的常數(shù),所以4-4m=0,即m=1,此時
CA
CB
=-1,
當AB與x軸垂直時,點A,B的坐標可分別設為(2,
2
)
,(2,-
2
)
,
此時
CA
CB
=(1,
2
)•(1,-
2
)=-1

故在x軸上存在定點C(1,0),使
CA
CB
為常數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、已知雙曲線x2-y2+1=0與拋物線y2=(k-1)x至多有兩個公共點,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=a2(a>0)的左、右頂點分別為A、B,雙曲線在第一象限的圖象上有一點P,∠PAB=α,∠PBA=β,∠APB=γ,則( 。
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=λ與橢圓
x2
16
+
y2
64
=1
有共同的焦點,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓
x2
16
+
y2
9
=1
的一個頂點,則a=
2
2

查看答案和解析>>

同步練習冊答案