【題目】交強險是車主須為機動車購買的險種.若普通座以下私家車投保交強險第一年的費用(基本保費)是元,在下一年續(xù)保時,實行費率浮動制,其保費與上一年度車輛發(fā)生道路交通事故情況相聯(lián)系,具體浮動情況如下表:
類型 | 浮動因素 | 浮動比率 |
上一年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上兩年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上三年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上一年度發(fā)生一次有責任不涉及死亡的道路交通事故 | ||
上一年度發(fā)生兩次及以上有責任不涉及死亡的道路交通事故 | 上浮 | |
上三年度發(fā)生有責任涉及死亡的道路交通事故 | 上浮 |
某一機構(gòu)為了研究某一品牌座以下投保情況,隨機抽取了輛車齡滿三年的該品牌同型號私家車的下一年續(xù)保情況,統(tǒng)計得到如下表格:
類型 | ||||||
數(shù)量 |
|
|
|
|
|
|
以這輛該品牌汽車的投保類型的頻率視為概率.
(I)試估計該地使用該品牌汽車的一續(xù)保人本年度的保費不超過元的概率;
(II)記為某家庭的一輛該品牌車在第四年續(xù)保時的費用,求的分布列和期望.
科目:高中數(shù)學 來源: 題型:
【題目】某大學安排4名畢業(yè)生到某企業(yè)的三個部門實習,要求每個部門至少安排1人,其中甲大學生不能安排到部門工作,安排方法有______種用數(shù)字作答.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個棱柱是正四棱柱的充要條件是( )
A.底面是正方形,有兩個側(cè)面是矩形B.底面是正方形,有兩個側(cè)面垂直底面
C.底面是正方形,相鄰兩個側(cè)面是矩形D.每個側(cè)面都是全等的矩形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求曲線的直角坐標方程;
(2)設(shè)過點且傾斜角為的直線和曲線交于兩點,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)與兩定點,連線的斜率之積等于非零常數(shù)的點的軌跡,加上、兩點所成的曲線可以是圓、橢圓或雙曲線,給出以下四個結(jié)論:①當時,曲線是一個圓;②當時,曲線的離心率為;③當時,曲線的漸近線方程為;④當曲線的焦點坐標分別為和時,的范圍是.其中正確的結(jié)論序號為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)且 )曲線的參數(shù)方程為(為參數(shù),且),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為: ,曲線的極坐標方程為.
(1)求與的交點到極點的距離;
(2)設(shè)與交于點,與交于點,當在上變化時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體中,點是對角線上的動點(點與不重合),則下列結(jié)論正確的是__________
①存在點,使得平面平面;
②存在點,使得平面平面;
③的面積可能等于;
④若分別是在平面與平面的正投影的面積,則存在點,使得
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,圓O:x2+y2=4與x軸負半軸交于點A,過點A的直線AM,AN分別與圓O交于M,N兩點,設(shè)直線AM、AN的斜率分別為k1、k2.
(1)若,求△AMN的面積;
(2)若k1k2=-2,求證:直線MN過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com