如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
(1)證明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

解:(1)證明:因為△PAB是等邊三角形,
∠PAC=∠PBC=90°,
PC=PC
所以Rt△PBC≌Rt△PAC,
可得AC=BC.
如圖,取AB中點D,連接
PD、CD,
則PD⊥AB,CD⊥AB,
所以AB⊥平面PDC,
所以AB⊥PC.
(2)作BE⊥PC,垂足為E,連接AE.
因為Rt△PBC≌Rt△PAC,
所以AE⊥PC,AE=BE.
由已知,平面PAC⊥平面PBC,
故∠AEB=90°.
因為Rt△AEB≌Rt△PEB,
所以△AEB,△PEB,△CEB都是等腰直角三角形.
由已知PC=4,得AE=BE=2,
△AEB的面積S=2.
因為PC⊥平面AEB,
所以三棱錐P-ABC的體積
V=×S×PC=
分析:(1)利用△PAB是等邊三角形,證明AC=BC.取AB中點D,連接PD、CD,通過證明AB⊥平面PDC,然后證明AB⊥PC.
(2)作BE⊥PC,垂足為E,連接AE.通過Rt△PBC≌Rt△PAC,Rt△AEB≌Rt△PEB,說明△AEB,△PEB,△CEB都是等腰直角三角形.然后求出三棱錐P-ABC的體積
點評:本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側(cè)面一圈回到點A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習(xí)冊答案