【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說法錯(cuò)誤的是(
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對(duì)稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減

【答案】D
【解析】解:把f(x)= sin2x﹣ cos2x+1=2sin(2x﹣ )+1的圖象向左平移 個(gè)單位, 得到函數(shù)y=2sin[2(x+ )﹣ ]+1=2sin(2x+ )+1的圖象,
再向下平移1個(gè)單位,得到函數(shù)y=g(x)=2sin(2x+ )的圖象,
對(duì)于A,由于T= ,故正確;
對(duì)于B,由2x+ =kπ+ ,k∈Z,解得:x= + ,k∈Z,可得:當(dāng)k=0時(shí),y=g(x)的圖象的一條對(duì)稱軸為直線x= ,故正確;
對(duì)于C, g(x)dx= 2sin(2x+ )dx=﹣cos(2x+ )| =﹣(cos ﹣cos )= ,故正確;
對(duì)于D,由2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,可得函數(shù)y=g(x)在區(qū)間[ ]上單調(diào)遞減,故錯(cuò)誤.
故選:D.
利用兩角差的正弦函數(shù)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得g(x),利用正弦函數(shù)的圖象和性質(zhì)逐一分析各個(gè)選項(xiàng)即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為正方形,延長AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A=

(1)若E,F(xiàn)分別為C1B1 , AC的中點(diǎn),求證:EF∥平面ABB1A1;
(2)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為

判斷直線l與圓C的交點(diǎn)個(gè)數(shù);

若圓C與直線l交于A,B兩點(diǎn),求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形中,,,,的中點(diǎn),矩形所在的平面和平面互相垂直.

求證:平面

)設(shè)的中點(diǎn)為,求證:平面

)求三棱錐的體積.(只寫出結(jié)果,不要求計(jì)算過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知t為實(shí)數(shù),函數(shù),其中

1)若,求的取值范圍。

2)當(dāng)時(shí),的圖象始終在的圖象的下方,求t的取值范圍;

3)設(shè),當(dāng)時(shí),函數(shù)的值域?yàn)?/span>,若的最小值為,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示,放在水平地面上的物體,受到方向不變的水平推力F的作用,F的大小與時(shí)間t的關(guān)系和物體運(yùn)動(dòng)速度v與時(shí)間t的關(guān)系如圖乙所示.下列判斷正確的是:

A.t3s時(shí),物體受到力的合力為零

B.t6s時(shí),將F撤掉,物體立刻靜止

C.2s4s內(nèi)物體所受摩擦力逐漸增大

D.t1s時(shí),物體所受摩擦力是1N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明“能被3整除”的第二步中,時(shí),為了使用假設(shè),應(yīng)將5k+1-2k+1變形為( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

同步練習(xí)冊答案