6.若直線l∥平面α,直線a?平面α,則l與a( 。
A.平行B.異面C.相交D.沒有公共點

分析 直線l∥平面α,則有若直線l與平面α無公共點,則有直線l與直線a無公共點,則有直線l與直線a平行或異面.

解答 解:∵直線l∥平面α,
∴若直線l與平面α無公共點,
又∵直線a?α,
∴直線l與直線a無公共點,
故選D.

點評 本題主要考查線與線的位置關(guān)系,在解題中靈活運用了公共點的個數(shù)求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}是首項為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列,數(shù)列{bn}滿足bn=log2$\frac{1}{a_n}$,則數(shù)列{anbn}的前n項和為( 。
A.$\frac{{{2^{n+1}}-n-2}}{2^n}$B.$\frac{{{2^{n+1}}-n-2}}{{{2^{n+1}}}}$C.$\frac{{{2^{n+1}}-n-1}}{2^n}$D.$\frac{{{2^{n+1}}-n-1}}{{{2^{n+1}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)的定義域為R,且$\frac{f'(x)}{2}-f(x)>2$,若f(0)=-1,則$\frac{f(x)+2}{{{e^{2x}}}}>1$不等式的解集是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=ax3+3x2+2,若f′(-1)=3,則a的值是( 。
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四面體ABCD中,CA=CD,AD⊥BD,點E,F(xiàn)分別是AB,AD的中點,
求證:
(1)直線EF∥平面BCD;
(2)AD⊥平面EFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|2x-1|+x+$\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)若a,b,c是正實數(shù),且a+b+c=m,求證:2(a2+b2+c2)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1},則∁R(A∩B)=( 。
A.RB.(-∞,0]∪[2,+∞)C.[2,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.f(x)=3tanx的最小正周期為(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,其前n項和Sn滿足關(guān)系式3t•Sn-(2t+3)•Sn-1=3t(t>0,n=2,3,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f($\frac{1}{_{n-1}}$),n=(2,3,…),求bn
(3)求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

同步練習(xí)冊答案