設(shè)定義在[-1,7]上的函數(shù)y=f(x)的圖像如圖所示,則關(guān)于函數(shù)y=的單調(diào)區(qū)間表述正確的是( )
A.在[-1,1]上單調(diào)遞減
B.在(0,1]上單調(diào)遞減,在[1,3)上單調(diào)遞增
C.在[5,7]上單調(diào)遞減
D.在[3,5]上單調(diào)遞增
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集9講練習(xí)卷(解析版) 題型:選擇題
一個由正數(shù)組成的等比數(shù)列,它的前4項(xiàng)和是前2項(xiàng)和的5倍,則此數(shù)列的公比為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集6講練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=x+sin x(x∈R)( )
A.是偶函數(shù)且為減函數(shù)
B.是偶函數(shù)且為增函數(shù)
C.是奇函數(shù)且為減函數(shù)
D.是奇函數(shù)且為增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集5講練習(xí)卷(解析版) 題型:選擇題
“m<0”是“函數(shù)f(x)=m+log2x(x≥1)存在零點(diǎn)”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集4講練習(xí)卷(解析版) 題型:選擇題
x為實(shí)數(shù),[x]表示不超過x的最大整數(shù),則函數(shù)f(x)=x-[x]在R上為( )
A.奇函數(shù) B.偶函數(shù) C.增函數(shù) D.周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集4講練習(xí)卷(解析版) 題型:選擇題
已知a>0,且a≠1,loga3<1,則實(shí)數(shù)a的取值范圍是( )
A.(0,1) B.(0,1)∪(3,+∞)
C.(3,+∞) D.(1,2)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集3B講練習(xí)卷(解析版) 題型:選擇題
設(shè)奇函數(shù)f(x)在[-1,1]上是增函數(shù),且f(-1)=-1,若函數(shù)f(x)≤t2-2at+1對所有的x∈[-1,1]都成立,則當(dāng)a∈[-1,1]時t的取值范圍是( )
A.-2≤t≤2 B.-≤t≤
C.t≤-2或t=0或t≥2 D.t≤-或t=0或t≥
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集3A講練習(xí)卷(解析版) 題型:選擇題
若直線ax-by+1=0平分圓C:x2+y2+2x-4y+1=0的周長,則ab的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集1B講練習(xí)卷(解析版) 題型:選擇題
若復(fù)數(shù) (a∈R,i是虛數(shù)單位)是純虛數(shù),則a的值為( )
A.-2 B.2 C.1 D.-1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com