已知點AB是拋物線y=x2上的兩個不同于坐標原點O的動點,且

(Ⅰ)求以AB為直徑的圓的圓心軌跡方程;

(Ⅱ)過AB分別作拋物線的切線,證明:兩切線交點M的縱坐標為定值.

答案:
解析:

  解(Ⅰ)設        1分

  

                          3分

                       5分

  則]

  為直徑的圓的圓心的軌跡方程為         7分

  (Ⅱ)由,得,                  9分

  ∴過A點的切線方程為,即

  同理過B點的切線方程為②            12分

  設的兩根,由韋達定理知

  又由(Ⅰ)      14分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點C為拋物線y2=2px(p>0)的準線與x軸的交點,點F為焦點,點A、B是拋物線上的兩個點.若
.
FA
+
.
FB
+2
.
FC
=
.
0
,則向量
.
FA
.
FB
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的方程為y2=4x,O為坐標原點
(Ⅰ)點A,B是拋物線上的兩點,且P(3,2)為線段AB的中點,求直線AB的方程
(Ⅱ)過點(2,0)的直線l交拋物線于點M,N,若△OMN的面積為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在原點,焦點在y軸上,離心率為
3
3
,以原點為圓心,橢圓短半軸長為半徑的圓與直線y=x+2相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線x2=4y上的兩個動點,且滿足
AF
FB
 (λ>0)
,過點A,B分別作拋物線的兩條切線,設兩切線的交點為M,試推斷
FM
AB
是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A、B是拋物線y=x2上的兩個不同于坐標原點O的動點,且=0.

(1)求以AB為直徑的圓的圓心的軌跡方程;

(2)過A、B分別作拋物線的切線,證明兩切線交點M的縱坐標為定值.

查看答案和解析>>

同步練習冊答案