過(guò)圓O:=4與y軸正半軸的交點(diǎn)A作這圓的切線l,M為l上任一點(diǎn),過(guò)M作圓O的另一條切線,切點(diǎn)為Q.求點(diǎn)M在直線l上移動(dòng)時(shí)△MAQ垂心的軌跡方程.

答案:
解析:

解 如圖所示:P為△AMQ之垂心,連OQ,則AOQP為菱形,∴|PQ|=|OA|=2.設(shè)P.于是有=2.∵為已知圓上的點(diǎn),∴=4.垂心P的軌跡方程為:=4,除去(0,0),(0,4)兩點(diǎn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”.
(1)若橢圓C過(guò)點(diǎn)(
5
,0)
,且焦距為4,求“伴隨圓”的方程;
(2)如果直線x+y=3
2
與橢圓C的“伴隨圓”有且只有一個(gè)交點(diǎn),那么請(qǐng)你畫出動(dòng)點(diǎn)Q(a,b)軌跡的大致圖形;
(3)已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2
2
,0),橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F
2
|=2
3
.設(shè)點(diǎn)P是橢圓C的“伴隨圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1、l2使得l1、l2與橢圓C都各只有一個(gè)交點(diǎn),且l1、l2分別交其“伴隨圓”于點(diǎn)M、N.當(dāng)P為“伴隨圓”與y軸正半軸的交點(diǎn)時(shí),求l1與l2的方程,并求線段|
MN
|
的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)),且|MN|=3,
(Ⅰ)求圓C的方程;
(Ⅱ)過(guò)點(diǎn)M任作一條直線與圓O:x2+y2=4相交于兩點(diǎn)A、B,連接AN、BN.求證:∠ANM=∠BNM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省聊城市2007年高考模擬試題數(shù)學(xué)理科 題型:044

如圖,已知圓O:x2+y2=4與y軸正半軸交于點(diǎn)P,A(-1,0),B(1,0),直線l與圓O切于點(diǎn)S(l不垂直于x軸),拋物線過(guò)A、B兩點(diǎn)且以l為準(zhǔn)線.

(Ⅰ)當(dāng)點(diǎn)S在圓周上運(yùn)動(dòng)時(shí),求證:拋物線的焦點(diǎn)Q始終在某一橢圓C上,并求出該橢圓C的方程;

(Ⅱ)設(shè)M、N是(Ⅰ)中橢圓C上除短軸端點(diǎn)外的不同兩點(diǎn),且,問:△MON的面積是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)),且|MN|=3,
(Ⅰ)求圓C的方程;
(Ⅱ)過(guò)點(diǎn)M任作一條直線與圓O:x2+y2=4相交于兩點(diǎn)A、B,連接AN、BN.求證:∠ANM=∠BNM.

查看答案和解析>>

同步練習(xí)冊(cè)答案