【題目】設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng),且時(shí)證明不等式:
【答案】(Ⅰ).(Ⅱ)見(jiàn)解析(Ⅲ)見(jiàn)解析
【解析】試題分析:(Ⅰ)代入時(shí),求得,求得切線(xiàn)的斜率,即可求解切線(xiàn)的方程;
(Ⅱ)求得的表達(dá)式,分和和三種情況分類(lèi)討論,即可求解函數(shù)的單調(diào)區(qū)間;
(Ⅲ)先由時(shí),證得,再取得,進(jìn)而可證明上述不等式.
試題解析:
(Ⅰ)解:當(dāng)時(shí), ,
所以,曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.
(Ⅱ)解:函數(shù).
,
分以下幾種情形討論:
(1)當(dāng)時(shí), ,函數(shù);
(2)當(dāng)時(shí), ,
①當(dāng)時(shí), ,
,
所以,函數(shù)
②當(dāng)時(shí),
,
所以, .
(Ⅲ)證明:當(dāng)-1時(shí), ,
令,則在上恒正,
所以, 在上單調(diào)遞增,當(dāng)時(shí),恒有,
即當(dāng)時(shí), ,
對(duì)任意正整數(shù),取得,
所以,
=
=
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組共10人,利用假期參加義工活動(dòng),已知參加義工活動(dòng)1次的有2人,2次的有4人,3次的有4人.現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(1)設(shè)為事件“選出的2人參加義工活動(dòng)次數(shù)之和為4”,求事件發(fā)生的概率;
(2)設(shè)為選出的2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求函數(shù)的極值;
(3)判斷在上的單調(diào)性,并加以說(shuō)明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形, , ,以的中點(diǎn)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.
(1)求以為焦點(diǎn),且過(guò)兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,過(guò)點(diǎn)作直線(xiàn)與橢圓交于不同的兩點(diǎn),設(shè),點(diǎn)坐標(biāo)為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠需要確定加工某大型零件所花費(fèi)的時(shí)間,連續(xù)4天做了4次統(tǒng)計(jì),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間(小時(shí)) | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐標(biāo)系中畫(huà)出以上數(shù)據(jù)的散點(diǎn)圖,求出關(guān)于的回歸方程,并在坐標(biāo)系中畫(huà)出回歸直線(xiàn);
(2)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?
參考公式:兩個(gè)具有線(xiàn)性關(guān)系的變量的一組數(shù)據(jù):,
其回歸方程為,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),若存在實(shí)數(shù)使得不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地高中年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)下表,并規(guī)定: 三級(jí)為合格, 級(jí)為不合格
為了了解該地高中年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照分組作出頻率分布直方圖如圖所示,樣本中分?jǐn)?shù)在分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.
(Ⅰ) 求及頻率分布直方圖中的值;
(Ⅱ) 根據(jù)統(tǒng)計(jì)思想方法,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該地高中學(xué)生中任選人,求至少有人成績(jī)是合格等級(jí)的概率;
(Ⅲ)上述容量為的樣本中,從兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)研,記為所抽取的名學(xué)生中成績(jī)?yōu)?/span>等級(jí)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(A)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的參數(shù)方程為 (為參數(shù)), 是曲線(xiàn)上的動(dòng)點(diǎn), 為線(xiàn)段的中點(diǎn),設(shè)點(diǎn)的軌跡為曲線(xiàn).
(1)求的坐標(biāo)方程;
(2)若射線(xiàn)與曲線(xiàn)異于極點(diǎn)的交點(diǎn)為,與曲線(xiàn)異于極點(diǎn)的交點(diǎn)為,求.
(B)設(shè)函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)對(duì)任意, 不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)和兩種產(chǎn)品,按計(jì)劃每天生產(chǎn)各不得少于10噸,已知生產(chǎn)產(chǎn)品噸需要用煤9噸,電4度,勞動(dòng)力3個(gè)(按工作日計(jì)算).生產(chǎn)產(chǎn)品1噸需要用煤4噸,電5度,勞動(dòng)力10個(gè),如果產(chǎn)品每噸價(jià)值7萬(wàn)元, 產(chǎn)品每噸價(jià)值12萬(wàn)元,而且每天用煤不超過(guò)300噸,用電不超過(guò)200度,勞動(dòng)力最多只有300個(gè),每天應(yīng)安排生產(chǎn)兩種產(chǎn)品各多少才是合理的?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com