設(shè)橢圓C:=1(a>b>0)的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動(dòng)點(diǎn)P(x0,y0)關(guān)于直線y=2x的對(duì)稱點(diǎn)為P1(x1,y1),求3x1-4y1的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:江西省吉水中學(xué)2012屆高三第一次月考數(shù)學(xué)理科試題 題型:044
設(shè)橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足=,且AB⊥AF2.
(1)求橢圓C的離心率;
(2)若過A、B、F2三點(diǎn)的圓恰好與直線l:x-y-3=0相切,求橢圓C的方程;
(3)在(2)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省微山一中高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),過F2的直線l與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2.
(1)求橢圓C的焦距;
(2)如果=2,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),過F2的直線l與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2.
(1)求橢圓C的焦距;
(2)如果=2,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線l的方程為x=,短軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)過定點(diǎn)B(1,0)作直線l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線PA1與直線QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com