【題目】如圖,在直三棱柱中,是邊長(zhǎng)為2的正三角形,的中點(diǎn),的中點(diǎn).

(1)證明:平面;

(2)若,求直線與平面所成角的正弦值.

【答案】(1)見(jiàn)證明;(2)

【解析】

1)取的中點(diǎn),連接,,據(jù)題設(shè)可得四邊形是平行四邊形,根據(jù)線面平行的證明定理即可得證;

2)延長(zhǎng)于點(diǎn),連接,根據(jù)題設(shè)條件可證明,,兩兩垂直,因而以O為原點(diǎn),以,軸,軸,軸的正方向建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),即可求得平面的法向量為,根據(jù)直線與平面夾角的正弦值為直線與平面法向量夾角的余弦值即可得解

1)證明:設(shè)點(diǎn)的中點(diǎn),連接,,

分別是,的中點(diǎn),

,且.

又在平行四邊形中,的中點(diǎn),

,且,

,且

∴四邊形是平行四邊形,

.

又∵平面,平面,

平面.

2)解:如圖,延長(zhǎng)于點(diǎn),連接,

則由(1

的中點(diǎn),

是正三角形,

.

又在直三棱柱中,平面平面,平面平面,

平面,故

所以,,兩兩垂直.

如圖,分別以,軸,軸,軸的正方向建立空間直角坐標(biāo)系

,,,

,.

設(shè)平面的法向量為,

,即,解得,

∴可取.

設(shè)直線與平面的所成角為,

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)機(jī)公司出售收割機(jī),一臺(tái)收割機(jī)的使用壽命為五年,在農(nóng)機(jī)公司購(gòu)買(mǎi)收割機(jī)時(shí)可以一次性額外訂購(gòu)買(mǎi)若干次維修服務(wù),費(fèi)用為每次100元,每次維修時(shí)公司維修人員均上門(mén)服務(wù),實(shí)際上門(mén)服務(wù)時(shí)還需支付維修人員的餐飲費(fèi)50/次;若實(shí)際維修次數(shù)少于購(gòu)買(mǎi)的維修次數(shù),則未提供服務(wù)的訂購(gòu)費(fèi)用退還50%;如果維修次數(shù)超過(guò)了購(gòu)買(mǎi)的次數(shù),農(nóng)機(jī)公司不再提供服務(wù),收割機(jī)的維修只能到私人維修店,每次維修費(fèi)用為400元,無(wú)須支付餐飲費(fèi);--位農(nóng)機(jī)手在購(gòu)買(mǎi)收割機(jī)時(shí),需決策一次性購(gòu)買(mǎi)多少次維修服務(wù).
為此,他擬范收集整理出一臺(tái)收割機(jī)在五年使用期內(nèi)維修次數(shù)及相應(yīng)的頻率如下表:

(1)如果農(nóng)機(jī)手在購(gòu)買(mǎi)收割機(jī)時(shí)購(gòu)買(mǎi)了6次維修,在使用期內(nèi)實(shí)際維修的次數(shù)為5次,這位農(nóng)機(jī)手的花費(fèi)總費(fèi)用是多少?如果實(shí)際維修的次數(shù)是8次,農(nóng)機(jī)手的花費(fèi)總費(fèi)用又是多少?

(2)農(nóng)機(jī)手購(gòu)買(mǎi)了一臺(tái)收制機(jī),試在購(gòu)買(mǎi)維修次數(shù)為6次和7次的兩個(gè)數(shù)據(jù)中,根據(jù)使用期內(nèi)維修時(shí)花費(fèi)的總費(fèi)用期望值,幫助農(nóng)機(jī)手進(jìn)行決策.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變)得到函數(shù)的圖像,則下列說(shuō)法正確的是( )

A. 函數(shù)的最小正周期為

B. 函數(shù)在區(qū)間上單調(diào)遞增

C. 函數(shù)在區(qū)間上的最小值為

D. 是函數(shù)的一條對(duì)稱(chēng)軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列n項(xiàng)和為,且其中m為實(shí)常數(shù), .

1)求證:是等比數(shù)列;

2)若數(shù)列的公比滿足,求證:數(shù)列 是等差數(shù)列,并求的通項(xiàng)公式;

3)若時(shí),設(shè),求數(shù)列的前n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論:

①在回歸分析模型中,殘差平方和越大,說(shuō)明模型的擬合效果越好;

②某學(xué)校有男教師60名、女教師40名,為了解教師的體育愛(ài)好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強(qiáng);

④在回歸方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量增加0.5個(gè)單位.

其中正確的結(jié)論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點(diǎn)O是四邊形ABCD的中心,關(guān)于直線A1O,下列說(shuō)法正確的是( )

A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的極小值;

2)若對(duì)任意的,函數(shù)的圖像恒在軸上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案