9.過三點(3,10),(7,20),(11,24)的線性回歸方程是$\widehaty=5.75+1.75x$.

分析 根據(jù)所給的三對數(shù)據(jù),做出y與x的平均數(shù),把所求的平均數(shù)代入求 b的公式,做出它的值,再把它代入求a的式子,求出a的值,根據(jù)做出的結果,寫出線性回歸方程.

解答 解:將給出的數(shù)據(jù)代入公式求解,可求得:$\overline{x}$=$\frac{1}{3}$(3+7+11)=7,$\overline{y}$=$\frac{1}{3}×(10+20+24)$=18,
b=$\frac{30+140+264-3×7×18}{9+49+121-3×49}$=1.75,a=18-1.75×7=5.75,
∴所求回歸直線方程為$\widehaty=5.75+1.75x$.
故答案為:$\widehaty=5.75+1.75x$.

點評 本題考查線性回歸方程的求法,在一組具有相關關系的變量的數(shù)據(jù)間,利用最小二乘法做出線性回歸方程的系數(shù),再代入樣本中心點求出a的值,本題是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若$\overrightarrow{a}$=(1,x),$\overrightarrow$=(4,-x),則“x∈(0,2)”是“向量$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=logax-$\frac{4}{x}$(a>1)在[1,2]上的最大值為0,則a=( 。
A.2B.$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.一個三棱錐的三視圖如圖所示,則該三棱錐的體積等于( 。
A.2B.$\frac{4\sqrt{2}}{3}$C.$\frac{4\sqrt{3}}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.對某臺機器購置后的運營年限x(x=1,2,3,…)與當年利潤y的統(tǒng)計分析知具備線性相關關系,線性回歸方程為$\widehat{y}$=10.47-1.3x,估計該臺機器使用8年最合算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是一幾何體的三視圖,則該幾何體的表面積為( 。
A.64+24πcm2B.64+36πcm2C.48+36πcm2D.48+24πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.實驗測得四組(x,y)的值為(1,2),(2,3),(3,4),(4,5),則y與x之間的線性回歸方程為( 。
A.y=x+1B.y=x+2C.y=2x+1D.y=x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓⊙O交BC于點E,DF是⊙O的切線交BC于點F,且EC=3EF=3.
(Ⅰ)若E為BC的中點,BD=$\frac{7}{2}$,求DE的長;
(Ⅱ)求$\frac{DE}{DC}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求下列數(shù)列{an}的通項公式:
(1)a1=1,an+1=2an+1;
(2)a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$
(3)a1=2,an+1=an2

查看答案和解析>>

同步練習冊答案