16.已知向量$\overrightarrow{a}$=(sin θ,-2),$\overrightarrow$=(cos θ,1),若$\overrightarrow{a}$∥$\overrightarrow$,則tan 2θ=$\frac{4}{3}$.

分析 由$\overrightarrow{a}$∥$\overrightarrow$,得到sin θ=-2cos θ,從而tan θ=-2,再由正切函數(shù)二倍角公式能求出tan 2θ的值.

解答 解:∵向量$\overrightarrow{a}$=(sin θ,-2),$\overrightarrow$=(cos θ,1),$\overrightarrow{a}$∥$\overrightarrow$,
∴sin θ=-2cos θ,∴tan θ=-2,
故tan 2θ=$\frac{2tanθ}{1-tan2θ}$=$\frac{-4}{1-4}$=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點評 本題考查正切值的二倍角的求法,是基礎(chǔ)題,解題時要認真審題,注意平面向坐標運算法則、向量平行的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.在2L高產(chǎn)優(yōu)質(zhì)小麥種子中混入了一粒帶白粉病的種子,從中隨機取出10mL,則含有白粉病種子的概率是( 。
A.$\frac{1}{20}$B.$\frac{1}{50}$C.$\frac{1}{100}$D.$\frac{1}{200}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,已知A、B、C是一條直路上的三點,AB與BC各等于2km,從三點分別遙望塔M,在A處看見塔在北偏東45°方向,在B處看塔在正東方向,在點C處看見塔在南偏東60°方向,則塔M到直路ABC的最短距離為$\frac{14+10\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.下列說法中,所有正確說法的序號是②④.
①終邊落在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函數(shù)y=2cos(x-$\frac{π}{4}$)圖象的一個對稱中心是($\frac{3π}{4}$,0);
③函數(shù)y=tanx在第一象限是增函數(shù);
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域為$\{y|-3≤y≤\sqrt{3}-1\}$,則a=b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若雙曲線$\frac{{x}^{2}}{m+9}$+$\frac{{y}^{2}}{9}$=1的離心率為2,則m的值是-36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)x,y滿足不等式組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值為4,則$\frac{1}{a}+\frac{2}{3b}$的最小值為4..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知直線l:x-$\sqrt{3}$y+6=0與圓x2+y2=12交于A,B兩點,過A,B分別作l的垂線與x軸交于C,D兩點,則|CD|=( 。
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.對任意兩實數(shù)a、b,定義運算“max{a,b}”如下:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,則關(guān)于函數(shù)f(x)=max{sinx,cosx},下列命題中:
①函數(shù)f(x)的值域為[-$\frac{\sqrt{2}}{2}$,1];         
②函數(shù)f(x)是周期函數(shù);
③函數(shù)f(x)的對稱軸為x=kπ+$\frac{π}{4}(k∈{Z})$;
④當且僅當x=2kπ(k∈Z)時,函數(shù)f(x)取得最大值1;
⑤當且僅當2kπ<x<2kπ+$\frac{3}{2}π(k∈{Z})$時,f(x)<0;
正確的是①②③(填上你認為正確的所有答案)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(Ⅰ)已知$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{5}{7}$,求sinα•cosα的值;
(Ⅱ)求$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$的值.

查看答案和解析>>

同步練習冊答案