已知四棱錐的底面為直角梯形,,,底面,且,的中點(diǎn).
⑴求證:直線(xiàn)平面
⑵若直線(xiàn)與平面所成的角為,求四棱錐的體積.

⑴見(jiàn)解析;⑵1

解析試題分析:⑴要證直線(xiàn)平面,需要在平面內(nèi)找到一條與平行的直線(xiàn).顯然不容易找到;故考慮利用面面平行退出線(xiàn)面平行, 取的中點(diǎn),構(gòu)造平面,根據(jù) ,可證.
⑵利用體積公式.需求出梯形的面積,根據(jù)底面,可知.
試題解析:⑴證明:取的中點(diǎn),則,故平面;
又四邊形正方形,∴,故∥平面;
∴平面平面,
平面.
⑵根據(jù)⑴可知,平面.所以根據(jù)題意有;
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/6/1qcil3.png" style="vertical-align:middle;" />為正方形,所以為等腰直角三角形.所以,
根據(jù)可知,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/c/hpwxz1.png" style="vertical-align:middle;" />底面,所以棱錐的高為.
因?yàn)樘菪?img src="http://thumb.zyjl.cn/pic5/tikupic/74/5/cihpr4.png" style="vertical-align:middle;" />的面積為,故.

考點(diǎn):利用面面平行證明線(xiàn)面平行;棱錐體積;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線(xiàn)段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說(shuō)明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓錐母線(xiàn)長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線(xiàn)的中點(diǎn),是底面圓的直徑,半徑與母線(xiàn)所成的角的大小等于

(1)求圓錐的側(cè)面積和體積.
(2)求異面直線(xiàn)所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線(xiàn)長(zhǎng);(2)求該圓臺(tái)的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,點(diǎn)M,N分別為
A′B和B′C′的中點(diǎn).

(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線(xiàn),點(diǎn)E在線(xiàn)段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線(xiàn)AC與平面BDG的交點(diǎn),求三棱錐B-DEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,設(shè)AD中點(diǎn)為P.

(1)當(dāng)E為BC中點(diǎn)時(shí),求證:CP∥平面ABEF;
(2)設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四面體ABCD中,△ABC與△DBC都是邊長(zhǎng)為4的正三角形.

(1)求證:BCAD;
(2)試問(wèn)該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長(zhǎng)AD的大;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等腰梯形ABCD中,ABCD,ABBCAD=2,CD=4,E為邊DC的中點(diǎn),如圖1.將△ADE沿AE折起到△AEP位置,連PB、PC,點(diǎn)Q是棱AE的中點(diǎn),點(diǎn)M在棱PC上,如圖2.

(1)若PA∥平面MQB,求PMMC;
(2)若平面AEP⊥平面ABCE,點(diǎn)MPC的中點(diǎn),求三棱錐A­MQB的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案