已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線(xiàn)長(zhǎng);(2)求該圓臺(tái)的體積。

(1)5;(2)

解析試題分析:(1)求出圓臺(tái)的上底面面積,下底面面積,寫(xiě)出側(cè)面積表達(dá)式,利用側(cè)面面積等于兩底面面積之和,求出圓臺(tái)的母線(xiàn)長(zhǎng);
(2)利用勾股定理求得圓臺(tái)的高h(yuǎn),根據(jù)圓臺(tái)的體積公式求出它的體積即可.
試題解析:解:( 1)設(shè)圓臺(tái)的母線(xiàn)長(zhǎng)為,則
圓臺(tái)的上底面面積為,圓臺(tái)的下底面面積為,
所以圓臺(tái)的底面面積為又圓臺(tái)的側(cè)面積,
于是,即為所求.6分
(2)由( 1)可求得,圓臺(tái)的高為.8分
      12分
考點(diǎn):圓臺(tái)的表面積和體積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平面平面,且四邊形為矩形,四邊形為直角梯形,
,,,,.
(1)作出這個(gè)幾何體的三視圖(不要求寫(xiě)作法).
(2)設(shè)是直線(xiàn)上的動(dòng)點(diǎn),判斷并證明直線(xiàn)與直線(xiàn)的位置關(guān)系.
(3) 求三棱錐的體積.[來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐F-ABCD的底面ABCD是菱形,其對(duì)角線(xiàn)AE、CF都與平面ABCD垂直,AE=1,CF=2.

(1)求二面角B-AF-D的大;
(2)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形ABEF中,,講DCEF沿CD折起,使得,得到一個(gè)幾何體,

(1)求證:平面ADF;
(2)求證:AF平面ABCD;
(3)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△ABC中,∠ABC=90°,∠A=30。,斜邊AC上的中線(xiàn)BD=2,現(xiàn)沿BD將△BCD折起成三棱錐C-ABD,已知G是線(xiàn)段BD的中點(diǎn),E,F(xiàn)分別是CG,AG的中點(diǎn).

(1)求證:EF//平面ABC;
(2)三棱錐C—ABD中,若棱AC=,求三棱錐A一BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點(diǎn)O在線(xiàn)段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)證明直線(xiàn)BC∥EF;
(2)求棱錐FOBED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四棱錐的底面為直角梯形,,,底面,且,的中點(diǎn).
⑴求證:直線(xiàn)平面
⑵若直線(xiàn)與平面所成的角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=AB.

(1)求證:EF∥平面BC1D;
(2)在棱AC上是否存在一個(gè)點(diǎn)G,使得平面EFG將三棱柱分割成的兩部分體積之比為1∶15,若存在,指出點(diǎn)G的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,,,的中點(diǎn),的中點(diǎn),

(1)求證:;
(2)求證:;
(3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案