【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 ,過(guò)點(diǎn) 的直線 ( 為參數(shù))與曲線 相交于點(diǎn) , 兩點(diǎn).
(1)求曲線 的平面直角坐標(biāo)系方程和直線 的普通方程;
(2)求 的值.
【答案】
(1)解:由 ,得 ,∴ .
即曲線 的直角坐標(biāo)方程為 .
消去參數(shù) ,得直線 的普通方程
(2)解:將直線 的參數(shù)方程為程代入曲線 的直角坐標(biāo)方程為 ,
得 .
由韋達(dá)定理,得 , ,
所以 , 同為正數(shù),
則
【解析】(1)由題意利用極坐標(biāo)和直角坐標(biāo)的互化關(guān)系得到曲線 C 的直角坐標(biāo)方程為 y2 = 2 x,再利用消參法求出直線的方程。(2)把直線的參數(shù)方程代入到拋物線的方程得到關(guān)于t的一元二次方程利用韋達(dá)定理求出 t1 + t2 = 12 2 , t1 t 2= 62整理需要求的代數(shù)式代入數(shù)值求出結(jié)果即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x)滿足f′(x)+2f(x)= ,且f(1)= ,則不等式f(lnx)>f(3)的解集為( )
A.(﹣∞,e3)
B.(0,e3)
C.(1,e3)
D.(e3 , +∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)討論 的單調(diào)性;
(2)當(dāng) 時(shí),證明: 對(duì)于任意的 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱 ,側(cè)面 .
(Ⅰ)若 分別是 的中點(diǎn),求證: ;
(Ⅱ)若三棱柱 的各棱長(zhǎng)均為2,側(cè)棱 與底面 所成的角為 ,問(wèn)在線段 上是否存在一點(diǎn) ,使得平面 ?若存在,求 與 的比值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)工會(huì)利用“健步行” 開(kāi)展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5 千步可獲積分30分(不足5千步不積分), 每多走2千步再積20分(不足2千步不積分).為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了 1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,九組,整理得到如圖頻率分布直方圖:
(1)求當(dāng)天這1000名會(huì)員中步數(shù)少于11千步的人數(shù);
(2)從當(dāng)天步數(shù)在的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于200分的概率;
(3)寫(xiě)出該組數(shù)據(jù)的中位數(shù)(只寫(xiě)結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們可以用隨機(jī)模擬的方法估計(jì)π的值,如圖程序框圖表示其基本步驟(函數(shù)RAND是產(chǎn)生隨機(jī)數(shù)的函數(shù),它能隨機(jī)產(chǎn)生(0,1)內(nèi)的任何一個(gè)實(shí)數(shù)).若輸出的結(jié)果為521,則由此可估計(jì)π的近似值為( )
A.3.119
B.3.126
C.3.132
D.3.151
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)的內(nèi)角所對(duì)的邊分別是,且是與的等差中項(xiàng).
(Ⅰ)求角;
(Ⅱ)設(shè),求周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: ,.
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直四棱柱 的所有棱長(zhǎng)均為2, 為 中點(diǎn).
(Ⅰ)求證: 平面 ;
(Ⅱ)若 ,求平面 與平面 所成銳二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com