【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差x

20

15

13

3

2

-5

-10

-18

物理偏差y

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知xy之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;

(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).

參考公式: ,.

參考數(shù)據(jù): .

【答案】(1);(2)93分.

【解析】分析:(1)由題意,計(jì)算,,求出,即可得到y關(guān)于x的線性回歸方程;

(2) 設(shè)該同學(xué)的物理成績(jī)?yōu)?/span>w,則物理偏差為w90.5,又該同學(xué)的數(shù)學(xué)偏差為

1261188.,(1)中回歸方程,可預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).

詳解:

(1)由題意,

計(jì)算

,

所以×,

所以線性回歸方程為x+.

(2)由題意,設(shè)該同學(xué)的物理成績(jī)?yōu)?/span>w,則物理偏差為w-90.5,

又該同學(xué)的數(shù)學(xué)偏差為126-118=8.

(1)中回歸方程,得w-90.5=×8+,解得w=93.

所以,能夠預(yù)測(cè)這位同學(xué)的物理成績(jī)?yōu)?/span>93.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(Ⅰ)證明:不論t為何值,直線l與曲線C恒有兩個(gè)公共點(diǎn);
(Ⅱ)以α為參數(shù),求直線l與曲線C相交所得弦AB的中點(diǎn)軌跡的參數(shù)方程,并判斷該軌跡的曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 ,過點(diǎn) 的直線 為參數(shù))與曲線 相交于點(diǎn) , 兩點(diǎn).
(1)求曲線 的平面直角坐標(biāo)系方程和直線 的普通方程;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y∈R,滿足2≤y≤4﹣x,x≥1,則 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下關(guān)于命題的說法正確的有(填寫所有正確命題的序號(hào)).
①“若 ,則函數(shù) ,且 )在其定義域內(nèi)是減函數(shù)”是真命題;
②命題“若 ,則 ”的否命題是“若 ,則 ”;
③命題“若 , 都是偶數(shù),則 也是偶數(shù)”的逆命題為真命題;
④命題“若 ,則 ”與命題“若 ,則 ”等價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時(shí),過原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<
(3)設(shè)h(x)=f(x+1)+g(x),當(dāng)x≥0,h(x)≥1時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中
(1)當(dāng) 時(shí),求函數(shù) 的單調(diào)遞減區(qū)間;
(2)若對(duì)任意的 , 為自然對(duì)數(shù)的底數(shù))都有 成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 中,底面 為梯形, 底面 .過 作一個(gè)平面 使得 平面 .

(1)求平面 將四棱錐 分成兩部分幾何體的體積之比;
(2)若平面 與平面 之間的距離為 ,求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國(guó)家 和3個(gè)歐洲國(guó)家 中選擇2個(gè)國(guó)家去旅游.
(Ⅰ)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(Ⅱ)若從亞洲國(guó)家和歐洲國(guó)家中各任選1個(gè),求這2個(gè)國(guó)家包括 但不包括 的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案