若點A(3,m)與點B(0,4)的距離為5,則m=
 
分析:本題比較簡單,利用兩點間距離公式直接求解即可.
解答:解:由題意知|AB|=
32+(m-4)2
=5
,
解得(m-4)2=16,
∴m=0或m=8.
故答案:m=0或8.
點評:本題考查兩點間距離公式,解題時要注意公式的逆運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
α
=
1
1
,屬于特征值1的一個特征向量為
β
=
&-2
;
(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動圓P與定圓O1:x2+y2+4x-5=0和O2:x2+y2-4x+3=0均外切,設(shè)P點的軌跡為C.
(1)求C的方程;
(2)過點A(3,0)作直線l交曲線C于P、Q兩點,交y軸于M點,若
MA
=λ1
MP
=λ2
MQ
當(dāng)λ12=m時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一張畫有直角坐標(biāo)系的圖紙折疊一次,使得點A(0,2)與點B(4,0)重合.若此時點C(7,3)與點D(m,n)重合,則m+n的值是
34
5
34
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點A(3,m)與點B(0,4)的距離為5,則m=______.

查看答案和解析>>

同步練習(xí)冊答案