已知函數(shù)數(shù)學(xué)公式
(Ⅰ)求函數(shù)的定義域,并證明數(shù)學(xué)公式在定義域上是奇函數(shù);
(Ⅱ)若x∈[2,6]數(shù)學(xué)公式恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)當(dāng)n∈N*時(shí),試比較f(2)+f(4)+f(6)+…+f(2n)與2n+2n2的大小關(guān)系.

解:(Ⅰ)由,解得x<-1或x>1,
∴函數(shù)的定義域?yàn)椋?∞,-1)∪(1,+∞)
當(dāng)x∈(-∞,-1)∪(1,+∞)時(shí),
在定義域上是奇函數(shù).(4分)
(Ⅱ)由x∈[2,6]時(shí),恒成立,
,∵x∈[2,6]
∴0<m<(x+1)(7-x)在x∈[2,6]成立
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函數(shù)的性質(zhì)可知x∈[2,3]時(shí)函數(shù)單調(diào)遞增,x∈[3,6]時(shí)函數(shù)單調(diào)遞減,x∈[2,6]時(shí),g(x)min=g(6)=7
∴0<m<7(8分)
(Ⅲ)f(2)+f(4)+f(6)++f(2n)=
構(gòu)造函數(shù)

當(dāng)x>0時(shí),h'(x)<0,∴在(0,+∞)單調(diào)遞減,
∴h(x)<h(0)=0(12分)
當(dāng)x=2n(n∈N*)時(shí),ln(1+2n)-(2n+2n2)<0∴l(xiāng)n(1+2n)<2n+2n2(14分)
分析:(I)令對(duì)手的真數(shù)大于0,求出定義域,求出f(-x),判斷f(-x)與f(x)的關(guān)系,判斷出奇偶性.
(II)先利用對(duì)數(shù)函數(shù)的單調(diào)性得到真數(shù)的大小,將m分離出來(lái),構(gòu)造新函數(shù)g(x),求出二次函數(shù)g(x)的最小值,令m小于最小值.
(III)構(gòu)造函數(shù)h(x),通過(guò)導(dǎo)數(shù),求出h(x)的最大值,證出要證的不等式.
點(diǎn)評(píng):解決不等式恒成立問(wèn)題,常采用分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;證明不等式常通過(guò)構(gòu)造函數(shù),求函數(shù)的最值來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側(cè)的第一個(gè)最大值、最小值點(diǎn)分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
3
(縱坐標(biāo)不變),然后再將所得圖象沿x軸負(fù)方向平移
π
3
個(gè)單位,最后將y=f(x)圖象上所有點(diǎn)的縱坐標(biāo)縮短到原來(lái)的
1
2
(橫坐標(biāo)不變)得到函數(shù)y=g(x)的圖象,寫(xiě)出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對(duì)稱(chēng)軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
(1)求a的值,并在直線(xiàn)坐標(biāo)系中畫(huà)出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時(shí)取得最大值4.
(1)求函數(shù)f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x+
3
sin2x
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)當(dāng) x∈[0,
π
4
]時(shí),求函數(shù)f(x)的值域;
(3)若將該函數(shù)圖象向左平移
π
4
個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省仙桃一中高三(上)第二次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)在給出的直角坐標(biāo)系中,用描點(diǎn)法畫(huà)出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案