設(shè)集合M={x|x=3k,k∈Z},P={x|x=3k+1,k∈Z},Q={x|x=3k-1,k∈Z},若a∈M,b∈P,c∈Q,則a+b-c∈( 。
分析:據(jù)集合中元素具有集合中元素的屬性設(shè)出a、b、c,求出a+b-c并將其化簡(jiǎn),判斷即可.
解答:解:∵a∈P,b∈M,c∈Q,
設(shè)a=3k1,k1∈Z,b=3k2+1,k2∈Z,c=3k3-1,k3∈Z
∴a+b-c=3k1+3k2+1-3k3+1=3(k1+k2+k3)+2=3(k1+k2+k3+1)-1,
又k1+k2+k3+1∈Z,∴c∈Q.
故選:C.
點(diǎn)評(píng):本題考查集合中的元素具有集合的公共屬性、元素與集合關(guān)系的判斷等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x=2m+1,m∈Z},N={x|x=3n-1,n∈Z},則M∩N為(    )

A.{x|x=6k+1,k∈Z}                         B.{x{x=6k-1,k∈Z}

C.{x|x=2k+3,k∈Z}                        D.{x|x=3k-1,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江模擬 題型:單選題

設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是( 。
A.M∪N=RB.M∩N={x|0<x<1}C.N∈MD.M∩N=?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省南陽市唐河三中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)集合M={x|x<3,x∈Z},集合N={x|x<4,x∈Z},全集U=Z,則(CUM)∩N等于( )
A.{x|x≤2,x∈Z}
B.∅
C.{x|2<x<3}
D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市蕭山區(qū)高考數(shù)學(xué)模擬試卷12(文科)(解析版) 題型:選擇題

設(shè)集合M={x||x|≤1},N={x|x2-x<0},則M∩N=( )
A.{x|-1≤x≤1}
B.{x|0<x<1}
C.{x|x<-1或x>1}
D.{x|x<0或x>1}

查看答案和解析>>

同步練習(xí)冊(cè)答案