(本小題14分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。

(I)求橢圓的方程;

(Ⅱ)求線段的長(zhǎng)度的最小值;

(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說(shuō)明理由。

 

【答案】

(I);(Ⅱ)時(shí),線段的長(zhǎng)度取最小值

(Ⅲ)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上存在2個(gè)不同的點(diǎn),使得的面積為

【解析】

試題分析:(1)由已知得,橢圓C的左頂點(diǎn)為A(-2,0),上頂點(diǎn)為D(0,1,由此能求出橢圓C的方程.(2)設(shè)直線AS的方程為y=k(x+2),從而M(,k).由題設(shè)條件可以求出N(,-),所以|MN|得到表示,再由均值不等式進(jìn)行求解

(3)在第二問(wèn)的基礎(chǔ)上確定了直線BS的斜率得到直線方程,利用點(diǎn)到直線的距離得到l‘,然后得到分析方程組的解的個(gè)數(shù)即為滿足題意的點(diǎn)的個(gè)數(shù)。

解:(I) ;故橢圓的方程為

(Ⅱ)直線AS的斜率顯然存在,且,故可設(shè)直線的方程為,從而

0

設(shè)

從而

 

 又

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立。

時(shí),線段的長(zhǎng)度取最小值

(Ⅲ)由(Ⅱ)可知,當(dāng)取最小值時(shí),

     此時(shí)的方程為

     要使橢圓上存在點(diǎn),使得的面積等于,只須到直線的距離等于,所以在平行于且與距離等于的直線上。設(shè)直線

則由解得

當(dāng)時(shí), 得,,故有2個(gè)不同的交點(diǎn);

當(dāng)時(shí),,故沒(méi)有交點(diǎn);

綜上:當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上存在2個(gè)不同的點(diǎn),使得的面積為

考點(diǎn):本試題主要考查了橢圓與直線的位置關(guān)系,解題時(shí)要注意公式的靈活運(yùn)用.

點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用橢圓的幾何性質(zhì)表述出|MN|,同時(shí)結(jié)合均值不等式求解最小值。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題14分)已知圓點(diǎn),過(guò)點(diǎn)作圓的切線為切點(diǎn).

(1)求所在直線的方程;

(2)求切線長(zhǎng);

(3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)

已知等比數(shù)列滿足,且,的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市高新區(qū)高三2月月考理科數(shù)學(xué)試卷(解析版 題型:解答題

(本小題14分)已知函數(shù),設(shè)

(Ⅰ)求F(x)的單調(diào)區(qū)間;

(Ⅱ)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值。

(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說(shuō)名理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年陜西省高三上學(xué)期月考理科數(shù)學(xué) 題型:解答題

(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)

 

對(duì)稱

(1)求函數(shù)的解析式;

(2)若在區(qū)間上的值不小于6,求實(shí)數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省高三2月月考數(shù)學(xué)理卷 題型:解答題

(本小題14分)

已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:

,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對(duì)任意的成立,則稱函數(shù)上的“k階收縮函數(shù)”

(1)若,試寫(xiě)出,的表達(dá)式;

(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,

如果是,求出對(duì)應(yīng)的k,如果不是,請(qǐng)說(shuō)明理由;

已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案