【題目】設(shè)是定義在R上的兩個(gè)函數(shù),滿足, 滿足,且當(dāng)時(shí),,.若在區(qū)間上,關(guān)于的方程有8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是______
【答案】
【解析】
由題可得是周期為4的函數(shù),是周期為2的函數(shù),轉(zhuǎn)化方程有8個(gè)不同的實(shí)數(shù)根為與在內(nèi)有8個(gè)交點(diǎn),利用函數(shù)圖像求解即可
由題,,所以的周期為;
因?yàn)?/span>,則的周期為2;
當(dāng)時(shí),,則的圖像為以為圓心,半徑為1的在軸上方的半圓;由,則當(dāng)時(shí),是以為圓心, 半徑為1的在軸下方的半圓,
由周期性畫(huà)出部分圖像,如圖所示,即時(shí)與在內(nèi)有2個(gè)交點(diǎn),
因?yàn)殛P(guān)于的方程有8個(gè)不同的實(shí)數(shù)根,則時(shí)與在內(nèi)需有6個(gè)交點(diǎn),則
①令與圓相切,此時(shí)有一個(gè)交點(diǎn),則,則(與上半圓相切)或(與下半圓相切);
②令過(guò),此時(shí)有2個(gè)交點(diǎn),則;令過(guò),此時(shí)有2個(gè)交點(diǎn),則;
假設(shè)在時(shí)有2個(gè)交點(diǎn),即與圓的上半圓有2個(gè)交點(diǎn),則,由函數(shù)的周期性,則在內(nèi)有6個(gè)交點(diǎn);
當(dāng)時(shí),圖像為圓的下半圓向右平移2個(gè)單位得到,則當(dāng)時(shí),與圓的下半圓有2個(gè)交點(diǎn),由的周期為2,則當(dāng)時(shí),與也有2個(gè)交點(diǎn),同理,則在內(nèi)有6個(gè)交點(diǎn);
綜上,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】冬季歷來(lái)是交通事故多發(fā)期,面臨著貨運(yùn)高危運(yùn)行、惡劣天氣頻發(fā)、包車客運(yùn)監(jiān)管漏洞和農(nóng)村交通繁忙等四個(gè)方面的挑戰(zhàn).全國(guó)公安交管部門要認(rèn)清形勢(shì)、正視問(wèn)題,針對(duì)近期事故暴露出來(lái)的問(wèn)題,強(qiáng)薄羽、補(bǔ)短板、堵漏洞,進(jìn)一步推動(dòng)五大行動(dòng),鞏固擴(kuò)大五大行動(dòng)成果,全力確保冬季交通安全形勢(shì)穩(wěn)定.據(jù)此,某網(wǎng)站推出了關(guān)于交通道路安全情況的調(diào)查,通過(guò)調(diào)查年齡在的人群,數(shù)據(jù)表明,交通道路安全仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此類問(wèn)題的約占80%,現(xiàn)從參與調(diào)查并關(guān)注交通道路安全的人群中隨機(jī)選出100人,并將這100人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求這100人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);
(2)現(xiàn)在要從年齡較大的第4,5組中用分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,求第4組恰好抽到2人的概率;
(3)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)其中關(guān)注交通道路安全的人數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與橢圓相交于,兩點(diǎn),點(diǎn)為線段的中點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).當(dāng)直線的斜率為時(shí),直線的斜率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的右頂點(diǎn),過(guò)的動(dòng)直線交該橢圓于,兩點(diǎn),記的面積為,的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn),它的一個(gè)焦點(diǎn)與拋物線E:的焦點(diǎn)重合,斜率為k的直線l交拋物線E于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn).
(1)求橢圓的方程;
(2)直線l經(jīng)過(guò)點(diǎn),設(shè)點(diǎn),且的面積為,求k的值;
(3)若直線l過(guò)點(diǎn),設(shè)直線,的斜率分別為,,且,,成等差數(shù)列,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為整數(shù),其前n項(xiàng)和為.規(guī)定:若數(shù)列滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,求出,并證明:對(duì)任意,;
(3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當(dāng)時(shí),在與之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項(xiàng),,其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.四棱柱的底面是直角梯形,,,,四邊形和均為正方形.
(1)證明;平面平面ABCD;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列,,滿足:對(duì)任意的,都有=,=,=.記=(表示個(gè)實(shí)數(shù),,中的最大值).
(1)若=,=,=,求,,的值;
(2)若=,=,求滿足=的的所有值;
(3)設(shè),,是非零整數(shù),且,,互不相等,證明:存在正整數(shù),使得數(shù)列,,中有且只有一個(gè)數(shù)列自第項(xiàng)起各項(xiàng)均為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)和是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、、所圍成四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;
(2)若P(1,0),直線C2與曲線C1相交于A,B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com