【題目】若函數(shù)是自然對數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有性質(zhì).下列函數(shù)中所有具有性質(zhì)的函數(shù)的序號為(

A.B.C.D.

【答案】AD

【解析】

利用指數(shù)函數(shù)的性質(zhì)與導(dǎo)數(shù)知識逐一判斷新函數(shù)的單調(diào)性即可.

解:對于Afx)=2x,則gx)=exfx)=ex2x=(x為實數(shù)集上的增函數(shù);

對于Bfx)=3x,則gx)=exfx)=ex3x=(x為實數(shù)集上的減函數(shù);

對于C,fx)=x3,則gx)=exfx)=exx3,

g′(x)=exx3+3exx2exx3+3x2)=exx2x+3),當(dāng)x<﹣3時,g′(x)<0,

gx)=exfx)在定義域R上先減后增;

對于Dfx)=x2+2,則gx)=exfx)=exx2+2),

g′(x)=exx2+2+2xexexx2+2x+2)>0在實數(shù)集R上恒成立,

gx)=exfx)在定義域R上是增函數(shù).

故選:AD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,橢圓的離心率為,過橢圓的左焦點,且斜率為的直線,與以右焦點為圓心,半徑為的圓相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)線段是橢圓過右焦點的弦,且,求的面積的最大值以及取最大值時實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個)和溫度)的7組觀測數(shù)據(jù),其散點圖如所示:

根據(jù)散點圖,結(jié)合函數(shù)知識,可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計算得到如下值:

27

74

182

表中,

1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);

2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時間內(nèi)的氣溫在之間(包括),估計該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,,.)

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽《九章算術(shù)商功》中將底面為長方形,兩個三角面與底面垂直的四棱錐體叫做陽馬.如圖,是一個陽馬的三視圖,則其外接球的體積為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐PABCPA⊥平面ABC,D是棱PB的中點已知PA=BC=2,AB=4,CBAB,則異面直線PC,AD所成角的余弦值為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結(jié)的中點,則在翻折過程中,下列說法中所有正確的是(

A.存在某個位置,使得

B.翻折過程中,的長是定值

C.,則

D.,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時,若,,總有成立,其中所有正確命題的序號是( )

A.B.①②C.D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù),其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達(dá)式,并求其定義域;

2)當(dāng)時,求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案