對于數(shù)列{an},從第二項起,每一項與它前一項的差依次組成等比數(shù)列,稱該等比數(shù)列為數(shù)列{an}的“差等比數(shù)列”,記為數(shù)列{bn}.設數(shù)列{bn}的首項b1=2,公比為q(q為常數(shù)).
(I)若q=2,寫出一個數(shù)列{an}的前4項;
(II)(。┡袛鄶(shù)列{an}是否為等差數(shù)列,并說明你的理由;
(ⅱ)a1與q滿足什么條件,數(shù)列{an}是等比數(shù)列,并證明你的結論;
(III)若a1=1,1<q<2,數(shù)列{an+cn}是公差為q的等差數(shù)列(n∈N*),且c1=q,求使得cn<0成立的n的取值范圍.
【答案】
分析:(Ⅰ)因為數(shù)列{b
n}是等比數(shù)列,且b
1=2,q=2,所以b
2=4,b
3=8,由此能夠求出一個數(shù)列{a
n}的前4項.
(Ⅱ)(ⅰ)因為b
1=2,所以
.q=1時,數(shù)列{a
n}是等差數(shù)列.若q≠1時,數(shù)列{a
n}不是等差數(shù)列.
(ⅱ)因為數(shù)列{b
n}是等比數(shù)列,首項b
1=2,公比為q,所以b
2=2q,
.所以a
2=a
1+2,a
3=a
1+2+2q.因為數(shù)列{a
n}是等比數(shù)列,所以
,所以當q=
時,數(shù)列{a
n}是等比數(shù)列.
(Ⅲ)因為{a
n+c
n}是公差為q的等差數(shù)列,所以(a
n+c
n)-(a
n-1+c
n-1)=q,由此猜想:當n≥3時,c
n<0.再用數(shù)學歸納法證明.
解答:解:(Ⅰ)因為數(shù)列{b
n}是等比數(shù)列,且b
1=2,q=2,
所以b
2=4,b
3=8,
所以a
1=1,a
2=3,a
3=7,a
15=15.(寫出滿足條件的一組即可)
…(2分)
(Ⅱ)(。┮驗閎
1=2,
所以a
2-a
1=2,a
3-a
2=2q,
,…,
,n≥2.
所以
.
①若q=1,所以a
n-a
n-1=2,
所以數(shù)列{a
n}是等差數(shù)列.…(3分)
②若q≠1,所以
,
所以a
n+1-a
n=
-
=
=2q
n-1.
因為q≠1,所以2q
n-1不是常數(shù).
所以數(shù)列{a
n}不是等差數(shù)列.…(5分)
(ⅱ)因為數(shù)列{b
n}是等比數(shù)列,首項b
1=2,公比為q,
所以b
2=2q,
.所以a
2=a
1+2,a
3=a
1+2+2q.
因為數(shù)列{a
n}是等比數(shù)列,
所以
,
即(a
2+2)
2=a
1•(a
1+2+2q),
所以q=
.
所以當q=
時,數(shù)列{a
n}是等比數(shù)列.…(7分)
(Ⅲ)因為{a
n+c
n}是公差為q的等差數(shù)列,
所以(a
n+c
n)-(a
n-1+c
n-1)=q,
又
,
所以
,
所以
,…,c
3-c
2=q-2q,c
2-c
1=q-2,
所以
)
=nq-
.…(9分)
所以c
1=q>0,c
2=2(q-1)>0,c
3=q-2<0,
c
4=-2(q
2-q+1)=-2(q-
)
2-
<0,…
猜想:當n≥3時,c
n<0.
用數(shù)學歸納法證明:
①當n=3時,c
3<0顯然成立,
②假設當n=k(k≥3)時,c
k<0,
那么當n=k+1時,
<q-2q
k-1=q(1-2q
k-2),
因為1<q<2,k≥3,
所以1-2q
k-2<0.
所以c
n+1<0,
所以當n=k+1時,c
n+1<0成立.
由①、②所述,當n≥3時,恒有c
n<0.…(14分)
點評:本題考查等差數(shù)列和等比數(shù)列的證明,綜合性強,難度大,對數(shù)學思維的要求較高,解題時要認真審題,仔細解答,注意數(shù)學歸納法的合理運用.