【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門(mén)制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn).這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;
(2)設(shè).試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
【答案】(1)分布列見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)易得可能的取值為,再求分布列即可.
(2)根據(jù)(1)中的分布列,分別求得時(shí)的數(shù)學(xué)期望,再分析三種情況下需要化驗(yàn)的總次數(shù),從而得到最多可以減少的次數(shù)即可.
(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.
所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽(yáng)性反應(yīng)的概率為.
依題意可知所以X的分布列為:
(2)方案②中.
結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:
.
所以當(dāng)時(shí),,此時(shí)960人需要化驗(yàn)的總次數(shù)為662次,
時(shí),,此時(shí)960人需要化驗(yàn)的總次數(shù)為580次,
時(shí),,此時(shí)960人需要化驗(yàn)的次數(shù)總為570次,
即時(shí)化驗(yàn)次數(shù)最多, 時(shí)次數(shù)居中, 時(shí)化驗(yàn)次數(shù)最少.
而采用方案①則需化驗(yàn)960次,
故在這三種分組情況下,相比方案①,當(dāng)時(shí)化驗(yàn)次數(shù)最多可以平均減少960-570=390次.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性,并證明有且僅有兩個(gè)零點(diǎn);
(Ⅱ)設(shè)是的一個(gè)零點(diǎn),證明曲線(xiàn)在點(diǎn)處的切線(xiàn)也是曲線(xiàn)的切線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2ACAB,若四面體P﹣ABC的體積為,則該球的體積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線(xiàn)翻折成,連結(jié),為的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的是( )
A.存在某個(gè)位置,使得
B.翻折過(guò)程中,的長(zhǎng)是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三個(gè)內(nèi)角,,所對(duì)的邊分別為,設(shè),.
(1)若,求與的夾角;
(2)若,求周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計(jì),得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為.
(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認(rèn)為甲乙兩套治療方案對(duì)患者白血病復(fù)發(fā)有影響;
復(fù)發(fā) | 未復(fù)發(fā) | 總計(jì) | |
甲方案 | |||
乙方案 | 2 | ||
總計(jì) | 70 |
(2)為改進(jìn)“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機(jī)抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某濕地公園的鳥(niǎo)瞰圖是一個(gè)直角梯形,其中:,,,長(zhǎng)1千米,長(zhǎng)千米,公園內(nèi)有一個(gè)形狀是扇形的天然湖泊,扇形以長(zhǎng)為半徑,弧為湖岸,其余部分為灘地,B,D點(diǎn)是公園的進(jìn)出口.公園管理方計(jì)劃在進(jìn)出口之間建造一條觀光步行道:線(xiàn)段線(xiàn)段弧,其中Q在線(xiàn)段上(異于線(xiàn)段端點(diǎn)),與弧相切于P點(diǎn)(異于弧端點(diǎn)]根據(jù)市場(chǎng)行情,段的建造費(fèi)用是每千米10萬(wàn)元,湖岸段弧的建造費(fèi)用是每千米萬(wàn)元(步行道的寬度不計(jì)),設(shè)為弧度觀光步行道的建造費(fèi)用為萬(wàn)元.
(1)求步行道的建造費(fèi)用關(guān)于的函數(shù)關(guān)系式,并求其走義域;
(2)當(dāng)為何值時(shí),步行道的建造費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn)P,滿(mǎn)足.,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A,B分別是橢圓C的左、右頂點(diǎn),過(guò)的直線(xiàn)交橢圓C于M,N兩點(diǎn),記直線(xiàn),的交點(diǎn)為T,是否存在一條定直線(xiàn)l,使點(diǎn)T恒在直線(xiàn)l上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,,試求函數(shù)極小值的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com