橢圓數(shù)學(xué)公式(a>b>0)的頂點(diǎn)A(a,0),B(0,b),焦點(diǎn)F(-c,0),若∠ABF=90°,橢圓的離心率等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:根據(jù)∠ABF=90°可知AF2=AB2+BF2,轉(zhuǎn)化成關(guān)于a,b,c的關(guān)系式,再根據(jù)a,b和c的關(guān)系進(jìn)而求得a和c的關(guān)系,則橢圓的離心率可得.
解答:依題意可知AF2=AB2+BF2
∴(a+c)2=a2+b2+b2+c2,
∵a2=b2+c2
∴a2-c2=ac,?e2+e-1=0
∴e=(負(fù)值舍去)
∴e=
故選A.
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì),考查了學(xué)生對(duì)橢圓基礎(chǔ)知識(shí)的把握和理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北冀州中學(xué)高二年級(jí)下學(xué)期第三次月考題(文) 題型:解答題

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為
(i)若,求直線l的傾斜角;
(ii)若點(diǎn)Q在線段AB的垂直平分線上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷14(理科)(解析版) 題型:解答題

已知橢圓(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為
(1)求橢圓的方程.
(2)設(shè)直線y-kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省天門市高考數(shù)學(xué)模擬試卷3(文科)(解析版) 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省廣州市華僑中學(xué)高三一輪復(fù)習(xí)檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知F1,F(xiàn)2分別是橢圓(a>b>0)的左,右焦點(diǎn),若橢圓的右準(zhǔn)線上存在一點(diǎn)P,使得線段PF1的垂直平分線過點(diǎn)F2,則離心率的范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn),,求k的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案