已知當(dāng)x∈R時(shí),不等式a+cos2x<5-4sinx+
5a-4
恒成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:在不等式中含有兩個(gè)變量a及x,其中x的范圍已知(x∈R),另一變量a的范圍即為所求,故可考慮將a及x分離.構(gòu)造函數(shù)f(x)=4sinx+cos2x,配方求其最大值,然后求解無(wú)理不等式得答案.
解答: 解:原不等式即:4sinx+cos2x<
5a-4
-a+5.
要使上式恒成立,只需
5a-4
-a+5大于4sinx+cos2x的最大值,
故上述問(wèn)題轉(zhuǎn)化成求f(x)=4sinx+cos2x的最值問(wèn)題.
f(x)=4sinx+cos2x=-2sin2x+4sinx+1=-2(sinx-1)2+3≤3,
5a-4
-a+5>3,即
5a-4
>a-2
5a-4≥0
a-2<0
5a-4≥0
a-2≥0
5a-4>(a-2)2

解得:
4
5
≤a<2
或2≤a<8.
綜上,實(shí)數(shù)a的取值范圍是[
4
5
,8)
點(diǎn)評(píng):本題考查了函數(shù)恒成立問(wèn)題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了無(wú)理不等式的解法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的奇函數(shù),且對(duì)任意的實(shí)數(shù)a,b當(dāng)a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0
(1)若a>b,試比較f(a),f(b)的大;
(2)若存在實(shí)數(shù)x∈[
1
2
,
3
2
]使得不等式f(x-c)+f(x-c2)>0成立,試求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-2|+|x+3|的最小值為m.
(Ⅰ)求m;
(Ⅱ)當(dāng)a+2b+c=m時(shí),求a2+2b2+3c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究函數(shù)f(x)=x2+
3
x
的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0),函數(shù)f(x)=
m
n
的最大值為6.
(Ⅰ)求A;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
12
個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[0,
24
]上的值域.
(Ⅲ)若函數(shù)y=f(x)滿足方程f(x)=k(3<k<6),求此方程在[0,
6
]內(nèi)所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求z=3x-2y的最大值和最小值,式中的x、y滿足條件
4x-5y+21≥0
x-3y+7≤0
2x+y-7≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知凸四邊形ABCD,試比較AB•CD+BC•DA與AC•BD的大。
(Ⅱ)△ABC三邊a,b,c上的中線分別為ma,mb,mc,求證:abmc+bcma+camb≥a2ma+b2mb+c2mc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某研究性學(xué)習(xí)小組對(duì)3月至7月連續(xù)100天晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,每天浸泡100顆種子的發(fā)芽情況統(tǒng)計(jì)如下表(1):
          表1
分組(單位:個(gè))頻數(shù)頻率
[10,15)50.050
[15,20)200.200
[20,25)0.350
[25,30)30
[30,35)100.100
合計(jì)1001.00
(Ⅰ)頻率分布表中的①,②位置應(yīng)填什么數(shù)據(jù)?并補(bǔ)全頻率分布直方圖,作出頻率分布折線圖;根據(jù)頻率分布直方圖,估計(jì)100天里種子發(fā)芽的平均值;(8分)
(Ⅱ)下面是3月1日至5日每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細(xì)記錄:
      表2
日期3月1日3月2日3月3日3月4日3月2日
溫差(℃)101113128
發(fā)芽數(shù)(顆)2325302616
(i)請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(ii)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(i)中所得的線性回歸方程是否可靠?(6分)
(參考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-x+2alnx
(1)求f(x)的單調(diào)區(qū)間;
(2)0<a<
1
8
時(shí),判斷方程:f(x)=(a+1)x根的個(gè)數(shù)并說(shuō)明理由;
(3)f(x)有兩個(gè)極值點(diǎn)x1,x2且x1<x2,證明:f(x2)>
-3-2ln2
8

查看答案和解析>>

同步練習(xí)冊(cè)答案