解答:
解:(Ⅰ)當(dāng)a=1時(shí),f(x)=x
2•e
x,
f′(x)=(x
2+2x)e
x;
∴f′(1)=3e,
又當(dāng)x=1時(shí),f(x)=f(1)=e;
∴切線方程為y-e=3e(x-1),
即y=f(x)在點(diǎn)(1,e)處的切線方程為
y=3ex-2e;
(Ⅱ)∵f′(x)=2xe
ax+ax
2•e
ax=(2x+ax
2)e
ax,
∴①當(dāng)a=0時(shí),f′(x)=2x,
當(dāng)x>0時(shí),f′(x)>0,f(x)是增函數(shù);
當(dāng)x<0時(shí),f′(x)<0,f(x)是減函數(shù);
∴當(dāng)a=0時(shí),f(x)在區(qū)間(-∞,0)上是減函數(shù),(0,+∞)上是增函數(shù);
函數(shù)f(x)在x=0處取得極小值f(0),且f(0)=0;
②當(dāng)a>0時(shí),2x+ax
2=0,
解得x=-
,或x=0;
當(dāng)x變化時(shí),f′(x)與f(x)的變化情況如下表;
∴當(dāng)a>0時(shí),f(x)在區(qū)間(-∞,-
)上是增函數(shù),在區(qū)間(-
,0)上是減函數(shù),在區(qū)間(0,+∞)上是增函數(shù);
∴函數(shù)f(x)在x=-
處取得極大值f(-
),且f(-
)=
=
;
③當(dāng)a<0時(shí),2x+ax
2=0,
解得x=0,或x=-
;
當(dāng)x變化時(shí),f′(x)與f(x)的變化情況如下表;
∴當(dāng)a<0時(shí),函數(shù)f(x)在區(qū)間(-∞,0)上是減函數(shù),在區(qū)間(0,-
)上是增函數(shù),在區(qū)間(-
,+∞)上是減函數(shù);
∴f(x)在x=0處取得極小值f(0),且f(0)=0;
f(x)在x=-
處取得極大值f(-
),且f(-
)=
=
.