設(shè)a>0,a≠1,行列式D=
.
ax13
201
24-3
.
中第3行第2列的代數(shù)余子式記作y,函數(shù)y=f(x)的反函數(shù)圖象經(jīng)過點(diǎn)(2,1),則a=______.
由題意得第3行第2列元素的代數(shù)余子式
M32=-
.
ax3
21
.
=-ax+6
依題意,點(diǎn)(1,2)在函數(shù)y=-ax+6的圖象上,
將x=1,y=2,代入y=-ax+6中,
得-a+6=2,解得a=4.
故答案為:4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)二模)設(shè)a>0,a≠1,行列式D=
.
ax13
201
24-3
.
中第3行第2列的代數(shù)余子式記作y,函數(shù)y=f(x)的反函數(shù)圖象經(jīng)過點(diǎn)(2,1),則a=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市長寧、嘉定區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

設(shè)a>0,a≠1,行列式中第3行第2列的代數(shù)余子式記作y,函數(shù)y=f(x)的反函數(shù)圖象經(jīng)過點(diǎn)(2,1),則a=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市長寧、嘉定區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

設(shè)a>0,a≠1,行列式中第3行第2列的代數(shù)余子式記作y,函數(shù)y=f(x)的反函數(shù)圖象經(jīng)過點(diǎn)(2,1),則a=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

設(shè)A是由m×n個實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數(shù)表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

所以

(2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

于是,

    

所以,當(dāng),且時,取得最大值1。

(3)對于給定的正整數(shù)t,任給數(shù)表如下,

任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

,并且,因此,不妨設(shè),

得定義知,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

所以

     

     

所以,

對數(shù)表

1

1

1

-1

-1

 

,

綜上,對于所有的的最大值為

 

查看答案和解析>>

同步練習(xí)冊答案