正四棱錐S-ABCD的底面邊長為2,高為2,E是邊BC的中點,動點P在表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為   
【答案】分析:根據(jù)題意可知點P的軌跡為三角形EFG,其中G、F為中點,根據(jù)中位線定理求出EF、GE、GF,從而求出軌跡的周長.
解答:解:由題意知:點P的軌跡為如圖所示的三角形EFG,其中G、F為中點,
∴EF=BD=,
GE=GF=SB=
∴軌跡的周長為+
答案:+
點評:本題主要考查了軌跡問題,以及點到面的距離等有關知識,同時考查了空間想象能力,計算推理能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正四棱錐S-ABCD中,E是側棱SC的中點,異面直線SA和BC所成角的大小是60°.
(1)求證:直線SA∥平面BDE;
(2)求二面角A-SB-D的余弦值;
(3)求直線BD和平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱錐S-ABCD,底面上的四個頂點A、B、C、D在球心為O的半球底面圓周上,頂點S在半球面上,則半球O的體積和正四棱錐S-ABCD的體積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、如圖在正四棱錐S-ABCD中,E是BC的中點,P點在側面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC,則動點P的軌跡與△SCD組成的相關圖形是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐S-ABCD中,側棱與底面所成的角為α,側面與底面所成的角為β,側面等腰三角形的底角為γ,相鄰兩側面所成的二面角為θ,則α、β、γ、θ的大小關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四棱錐S-ABCD中,點O是底面中心,SO=2,側棱SA=2
3
,則該棱錐的體積為
32
3
32
3

查看答案和解析>>

同步練習冊答案