設(shè)x,y滿(mǎn)足約束條件
x+y≤2
y≤x
y≥0
,則z=3x+y的最大值是______.
作出不等式對(duì)應(yīng)的平面區(qū)域如圖,
由z=3x+y,得y=-3x+z,
平移直線(xiàn)y=-3x+z,由圖象可知當(dāng)直線(xiàn)y=-3x+z,經(jīng)過(guò)點(diǎn)C(2,0)時(shí),直線(xiàn)y=-3x+z的截距最大,
此時(shí)z最大.
此時(shí)z的最大值為z=3×2+0=6,
故答案為:6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知實(shí)數(shù)x,y滿(mǎn)足
x+y-1≤0
x-y≤0
x≥0
,則2x-y的最大值為( 。
A.
1
2
B.0C.-1D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若實(shí)數(shù)x,y滿(mǎn)足
x-y+1≥0
x+y≥0
x≤0
,則z=x+2y的最大值是( 。
A.
1
2
B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)變量x,y滿(mǎn)足約束條件
x+y≥3
x-y≥-1
2x-y≤3
,則目標(biāo)函數(shù)z=
y+1
x
的取值范圍是( 。
A.[1,2]B.[1,
3
2
]
C.[
3
2
,3]
D.[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

不等式組
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
表示的平面區(qū)域記為C.
(1)畫(huà)出平面區(qū)域C,并求出C包含的整點(diǎn)個(gè)數(shù);
(2)求平面區(qū)域C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件
x+y-2≥0
x≤2
y≤2
,則目標(biāo)函數(shù)z=2x+y的最大值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求由約束條件
x+y≤5
2x+y≤6
x≥0,y≥0
確定的平面區(qū)域的面積S和目標(biāo)函數(shù)z=4x+3y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,各頂點(diǎn)坐標(biāo)分別為A(3,-1)、B(-1,1)、C(1,3),寫(xiě)出△ABC區(qū)域所表示的二元一次不等式組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

廣東省某家電企業(yè)根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按40個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)機(jī)、彩電、冰箱共120臺(tái),且冰箱至少生產(chǎn)20臺(tái),已知生產(chǎn)這些家電產(chǎn)品每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表:
家電名稱(chēng)空調(diào)機(jī)彩電冰箱
工時(shí)
1
2
1
3
1
4
產(chǎn)值/千元432
問(wèn)每周應(yīng)生產(chǎn)空調(diào)機(jī)、彩電、冰箱各多少臺(tái),才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)

查看答案和解析>>

同步練習(xí)冊(cè)答案