已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(都在軸上方),且
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

(1),(2),(3).

解析試題分析:(1)本題橢圓方程的求法是軌跡法.這是由于題目沒有明確直線是左準線,點是左焦點.不可利用待定系數(shù)法求解. 設(shè),則,,化簡得: 橢圓C的方程為:,(2)條件中角的關(guān)系一般化為斜率,利用坐標進行求解. 因為,所以,由題意得,,可求與橢圓交點,從而可得直線方程(3)直線過定點問題,一般先表示出直線, ,利用等量關(guān)系將兩元消為一元. ,代入得:,.化簡得,直線方程:直線總經(jīng)過定點
解:(1)設(shè),則,       (2分)

化簡得: 橢圓C的方程為:   (4分)
(2),
   (3分)
代入得:,,代入
,   (5分)
,   (6分)
(3)解法一:由于,。   (1分)
設(shè)
設(shè)直線方程:,代入得:
   (3分)



,   (5分)
直線方程:直線總經(jīng)過定點   (6分)
解法二:由于,所以關(guān)于x軸的對稱點在直線上。

設(shè)
設(shè)直線方程:,代入

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:)的左焦點為,離心率為.
(1)求橢圓C的標準方程;
(2)設(shè)O為坐標原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓經(jīng)過點,其離心率
(1)求橢圓的方程;
(2)過坐標原點作不與坐標軸重合的直線交橢圓兩點,過軸的垂線,垂足為,連接并延長交橢圓于點,試判斷隨著的轉(zhuǎn)動,直線的斜率的乘積是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)動點P滿足:=+2,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)如圖,分別過橢圓左右焦點、的動直線相交于點,與橢圓分別交于不同四點,直線的斜率、、滿足.已知當軸重合時,,
(1)求橢圓的方程;
(2)是否存在定點,使得為定值.若存在,求出點坐標并求出此定值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是拋物線為上的一點,以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右焦點分別為,點為短軸的一個端點,.
(1)求橢圓的方程;
(2)如圖,過右焦點,且斜率為的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為.
求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線="1" 的兩個焦點為、,P是雙曲線上的一點,
且滿足 ,
(1)求的值;
(2)拋物線的焦點F與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過點F與該拋物線交于A、B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸端點分別為.
(1)求橢圓的標準方程;
(2)若,是橢圓上關(guān)于軸對稱的兩個不同點,直線軸交于點,判斷以線段為直徑的圓是否過點,并說明理由.

查看答案和解析>>

同步練習冊答案