已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對稱的兩個不同點(diǎn),直線軸交于點(diǎn),判斷以線段為直徑的圓是否過點(diǎn),并說明理由.

(1)橢圓的標(biāo)準(zhǔn)方程為;(2)點(diǎn)不在以線段為直徑的圓上.

解析試題分析:(1)求橢圓的標(biāo)準(zhǔn)方程,已知橢圓的離心率為,短軸端點(diǎn)分別為,可設(shè)橢圓方程為,由,可得,從而得橢圓的標(biāo)準(zhǔn)方程;(2)由于,是橢圓上關(guān)于軸對稱的兩個不同點(diǎn),可設(shè),若點(diǎn)在以線段為直徑的圓上,則,即,即,因此可寫出直線的方程為,令,得,寫出向量的坐標(biāo),看是否等于0,即可判斷出.
(1)由已知可設(shè)橢圓的方程為:             1分
,可得,                              3分
解得,                           4分
所以橢圓的標(biāo)準(zhǔn)方程為.                           5分
(2)法一:設(shè)                              6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/8/cqrj71.png" style="vertical-align:middle;" />,
所以直線的方程為,                   7分
,得,所以.                         8分
所以                          9分
所以,                     10分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/9/xryv5.png" style="vertical-align:middle;" />,代入得                11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/d/ho3bj2.png" style="vertical-align:middle;" />,所以.                12分
所以,                              13分
所以點(diǎn)不在以線段

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)、(,都在軸上方),且
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時,求直線方程;
(3)對于動直線,是否存在一個定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C1=1(a>b>0)的左、右焦點(diǎn)分別為為,恰是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A,B兩點(diǎn),若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
(1)求拋物線的方程;
(2) 設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求的面積最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線、兩點(diǎn),點(diǎn),問是否存在,使?若存在求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線兩個不同的點(diǎn).
(1)求曲線的方程;
(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦.當(dāng)直線斜率為0時,

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點(diǎn)為,且橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)斜率為的直線與橢圓交于不同兩點(diǎn)、,以線段為底邊作等腰三角形,其中頂點(diǎn)的坐標(biāo)為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)P是圓上的動點(diǎn),點(diǎn)D是P在軸上投影,M為PD上一點(diǎn),且

(1)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

同步練習(xí)冊答案